Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 6, Pages 803–811
DOI: https://doi.org/10.4213/mzm11784
(Mi mzm11784)
 

This article is cited in 5 scientific papers (total in 5 papers)

Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics

E. A. Balovaa, K. Yu. Osipenkobc

a Moscow Aviation Institute (National Research University)
b Lomonosov Moscow State University
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (489 kB) Citations (5)
References:
Abstract: We consider the optimal recovery problem for the solution of the Dirichlet problem for the Laplace equation in the unit $d$-dimensional ball on a sphere of radius $\rho$ from a finite collection of inaccurately specified Fourier coefficients of the solution on a sphere of radius $r$, $0<r<\rho<1$. The methods are required to be exact on certain subspaces of spherical harmonics.
Keywords: optimal recovery, Dirichlet problem, Laplace equation, spherical harmonics.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00649
This work was supported by the Russian Foundation for Basic Research under grant 17-01-00649.
Received: 29.08.2017
English version:
Mathematical Notes, 2018, Volume 104, Issue 6, Pages 781–788
DOI: https://doi.org/10.1134/S0001434618110238
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: E. A. Balova, K. Yu. Osipenko, “Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics”, Mat. Zametki, 104:6 (2018), 803–811; Math. Notes, 104:6 (2018), 781–788
Citation in format AMSBIB
\Bibitem{BalOsi18}
\by E.~A.~Balova, K.~Yu.~Osipenko
\paper Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 6
\pages 803--811
\mathnet{http://mi.mathnet.ru/mzm11784}
\crossref{https://doi.org/10.4213/mzm11784}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881772}
\elib{https://elibrary.ru/item.asp?id=36448720}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 6
\pages 781--788
\crossref{https://doi.org/10.1134/S0001434618110238}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454546800023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059241854}
Linking options:
  • https://www.mathnet.ru/eng/mzm11784
  • https://doi.org/10.4213/mzm11784
  • https://www.mathnet.ru/eng/mzm/v104/i6/p803
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024