Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 5, paper published in the English version journal (Mi mzm11721)  

This article is cited in 11 scientific papers (total in 11 papers)

Papers published in the English version of the journal

Existence of Infinitely Many Solutions for $\Delta_\gamma $-Laplace Problems

D. T. Luyen, D. T. Huong, L. T. H. Hanh

Department of Mathematics, Hoa Lu University, Ninh Nhat, Ninh Binh City, Vietnam
Citations (11)
Abstract: In this article, we study the existence of infinitely many solutions for the boundary–value problem
\begin{gather*} -\Delta_\gamma u+a(x)u=f(x,u) \quad \text{in}\ \ \Omega, \qquad u=0 \quad\text{on}\ \ \partial\Omega, \end{gather*}
where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N$ ($N \ge 2$) and $\Delta_{\gamma}$ is a subelliptic operator of the form
$$ \Delta_\gamma: =\sum\limits_{j=1}^{N}\partial_{x_j} \big(\gamma_j^2 \partial_{x_j} \big), \qquad \partial_{x_j}: =\frac{\partial }{\partial x_{j}},\quad \gamma = (\gamma_1, \gamma_2, \dots, \gamma_N). $$
Our main tools are the local linking and the symmetric mountain pass theorem in critical point theory.
Keywords: $\Delta_\gamma$-Laplace problems, Cerami condition, variational method, weak solutions, critical point theory.
Funding agency Grant number
National Foundation for Science and Technology Development Vietnam 101.02-2017.21
This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant 101.02-2017.21.
Received: 10.06.2017
Revised: 12.03.2018
English version:
Mathematical Notes, 2018, Volume 103, Issue 5, Pages 724–736
DOI: https://doi.org/10.1134/S000143461805005X
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. T. Luyen, D. T. Huong, L. T. H. Hanh, “Existence of Infinitely Many Solutions for $\Delta_\gamma $-Laplace Problems”, Math. Notes, 103:5 (2018), 724–736
Citation in format AMSBIB
\Bibitem{LuyHuoLe 18}
\by D.~T.~Luyen, D.~T.~Huong, L.~T.~H.~Hanh
\paper Existence of Infinitely Many Solutions for
$\Delta_\gamma
$-Laplace Problems
\jour Math. Notes
\yr 2018
\vol 103
\issue 5
\pages 724--736
\mathnet{http://mi.mathnet.ru/mzm11721}
\crossref{https://doi.org/10.1134/S000143461805005X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3830469}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436583800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049128775}
Linking options:
  • https://www.mathnet.ru/eng/mzm11721
  • This publication is cited in the following 11 articles:
    1. Duong Trong Luyen, Mai Thi Thu Trang, “Multiple solutions to boundary-value problems for fourth-order elliptic equations”, Ukr Math J  crossref  crossref  mathscinet
    2. 75, no. 6, 2023, 950  crossref  crossref  mathscinet
    3. J. Chen, L. Li, Sh.-J. Chen, X.-Q. Yang, “Existence of ground state solution for semilinear-Laplace equation”, Complex Variables and Elliptic Equations, 68:11 (2023), 1953  crossref  mathscinet
    4. D. T. Luyen, Ph. V. Cuong, “Multiple solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations”, Rend. Circ. Mat. Palermo, 71:1 (2022), 495–513  crossref  mathscinet  isi
    5. J. Chen, L. Li, Sh. Chen, “Infinitely many solutions for Kirchhoff-type equations involving degenerate operator”, J. Contemp. Mathemat. Anal., 57:4 (2022), 252  crossref  mathscinet
    6. Duong Trong Luyen, Le Thi Hong Hanh, “Three nontrivial solutions of boundary value problems for semilinear $\Delta_{\gamma}$-Laplace equation”, Boletim da Sociedade Paranaense de Matemática, 40 (2022), 1  crossref
    7. Duong Trong Luyen, Le Thi Hong Hanh, “Infinitely many solutions for perturbed $\Lambda\gamma$-Laplace equations”, Georgian Mathematical Journal, 29:6 (2022), 863  crossref  mathscinet
    8. J. Chen, Sh. Chen, L. Li, “Infinitely many solutions for Kirchhoff type equations involving degenerate operator”, Proceedings of NAS RA. Mathematics, 2022, 46  crossref
    9. Duong Trong Luyen, Phung Thi Kim Yen, “Long time behavior of solutions to semilinear hyperbolic equations involving strongly degenerate elliptic differential operators”, J. Korean. Math. Soc., 58:5 (2021), 1279–1298  crossref  mathscinet  isi
    10. D. T. Luyen, “Picone's identity for -Laplace operator and its applications”, Ukr. Mat. Zhurn., 73:4 (2021), 515  crossref  mathscinet
    11. D. T. Luyen, “Picone's identity for increment $\Delta_\gamma$ -Laplace operator and its applications”, Ukr. Math. J., 73:4 (2021), 601–609  crossref  mathscinet  isi  scopus
    12. Luyen D.T., Tri N.M., “Infinitely Many Solutions For a Class of Perturbed Degenerate Elliptic Equations Involving the Grushin Operator”, Complex Var. Elliptic Equ., 65:12 (2020), 2135–2150  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:200
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025