Abstract:
In this article, we study the existence of infinitely many
solutions for the boundary–value problem
\begin{gather*}
-\Delta_\gamma u+a(x)u=f(x,u) \quad \text{in}\ \ \Omega, \qquad
u=0 \quad\text{on}\ \ \partial\Omega,
\end{gather*}
where
$\Omega$
is a bounded domain with smooth boundary in
$\mathbb{R}^N$ ($N \ge 2$)
and
$\Delta_{\gamma}$
is a subelliptic operator of the form
$$
\Delta_\gamma: =\sum\limits_{j=1}^{N}\partial_{x_j} \big(\gamma_j^2 \partial_{x_j} \big),
\qquad \partial_{x_j}:
=\frac{\partial }{\partial x_{j}},\quad \gamma = (\gamma_1, \gamma_2, \dots, \gamma_N).
$$
Our main tools are the local linking and the symmetric mountain pass theorem in
critical point theory.
Citation:
D. T. Luyen, D. T. Huong, L. T. H. Hanh, “Existence of Infinitely Many Solutions for
$\Delta_\gamma
$-Laplace Problems”, Math. Notes, 103:5 (2018), 724–736
\Bibitem{LuyHuoLe 18}
\by D.~T.~Luyen, D.~T.~Huong, L.~T.~H.~Hanh
\paper Existence of Infinitely Many Solutions for
$\Delta_\gamma
$-Laplace Problems
\jour Math. Notes
\yr 2018
\vol 103
\issue 5
\pages 724--736
\mathnet{http://mi.mathnet.ru/mzm11721}
\crossref{https://doi.org/10.1134/S000143461805005X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3830469}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436583800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049128775}
Linking options:
https://www.mathnet.ru/eng/mzm11721
This publication is cited in the following 11 articles:
Duong Trong Luyen, Mai Thi Thu Trang, “Multiple solutions to boundary-value problems for fourth-order elliptic equations”, Ukr Math J
75, no. 6, 2023, 950
J. Chen, L. Li, Sh.-J. Chen, X.-Q. Yang, “Existence of ground state solution for semilinear-Laplace equation”, Complex Variables and Elliptic Equations, 68:11 (2023), 1953
D. T. Luyen, Ph. V. Cuong, “Multiple solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations”, Rend. Circ. Mat. Palermo, 71:1 (2022), 495–513
J. Chen, L. Li, Sh. Chen, “Infinitely many solutions for Kirchhoff-type equations involving degenerate operator”, J. Contemp. Mathemat. Anal., 57:4 (2022), 252
Duong Trong Luyen, Le Thi Hong Hanh, “Three nontrivial solutions of boundary value problems for semilinear $\Delta_{\gamma}$-Laplace equation”, Boletim da Sociedade Paranaense de Matemática, 40 (2022), 1
Duong Trong Luyen, Le Thi Hong Hanh, “Infinitely many solutions for perturbed $\Lambda\gamma$-Laplace equations”, Georgian Mathematical Journal, 29:6 (2022), 863
J. Chen, Sh. Chen, L. Li, “Infinitely many solutions for Kirchhoff type equations involving degenerate operator”, Proceedings of NAS RA. Mathematics, 2022, 46
Duong Trong Luyen, Phung Thi Kim Yen, “Long time behavior of solutions to semilinear hyperbolic equations involving strongly degenerate elliptic differential operators”, J. Korean. Math. Soc., 58:5 (2021), 1279–1298
D. T. Luyen, “Picone's identity for -Laplace operator and its applications”, Ukr. Mat. Zhurn., 73:4 (2021), 515
D. T. Luyen, “Picone's identity for increment $\Delta_\gamma$ -Laplace operator and its applications”, Ukr. Math. J., 73:4 (2021), 601–609
Luyen D.T., Tri N.M., “Infinitely Many Solutions For a Class of Perturbed Degenerate Elliptic Equations Involving the Grushin Operator”, Complex Var. Elliptic Equ., 65:12 (2020), 2135–2150