|
Matematicheskie Zametki, 2018, Volume 103, Issue 5, paper published in the English version journal
(Mi mzm11721)
|
|
|
|
This article is cited in 11 scientific papers (total in 11 papers)
Papers published in the English version of the journal
Existence of Infinitely Many Solutions for
$\Delta_\gamma
$-Laplace Problems
D. T. Luyen, D. T. Huong, L. T. H. Hanh Department of Mathematics, Hoa Lu University, Ninh Nhat,
Ninh Binh City, Vietnam
Abstract:
In this article, we study the existence of infinitely many
solutions for the boundary–value problem
\begin{gather*}
-\Delta_\gamma u+a(x)u=f(x,u) \quad \text{in}\ \ \Omega, \qquad
u=0 \quad\text{on}\ \ \partial\Omega,
\end{gather*}
where
$\Omega$
is a bounded domain with smooth boundary in
$\mathbb{R}^N$ ($N \ge 2$)
and
$\Delta_{\gamma}$
is a subelliptic operator of the form
$$
\Delta_\gamma: =\sum\limits_{j=1}^{N}\partial_{x_j} \big(\gamma_j^2 \partial_{x_j} \big),
\qquad \partial_{x_j}:
=\frac{\partial }{\partial x_{j}},\quad \gamma = (\gamma_1, \gamma_2, \dots, \gamma_N).
$$
Our main tools are the local linking and the symmetric mountain pass theorem in
critical point theory.
Keywords:
$\Delta_\gamma$-Laplace problems, Cerami condition,
variational method, weak solutions, critical point theory.
Received: 10.06.2017 Revised: 12.03.2018
Citation:
D. T. Luyen, D. T. Huong, L. T. H. Hanh, “Existence of Infinitely Many Solutions for
$\Delta_\gamma
$-Laplace Problems”, Math. Notes, 103:5 (2018), 724–736
Linking options:
https://www.mathnet.ru/eng/mzm11721
|
Statistics & downloads: |
Abstract page: | 172 |
|