Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 6, Pages 828–835
DOI: https://doi.org/10.4213/mzm11716
(Mi mzm11716)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory

S. Yu. Dobrokhotovab, V. E. Nazaikinskiiab

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
Full-text PDF (488 kB) Citations (8)
References:
Abstract: Rapidly oscillating integrals of the form
\begin{equation*} I(r,h)=\frac{1}{2\pi}\int_{-\pi}^{\pi} e^{\tfrac ih F(r\cos\phi)} G(r\cos\phi) \,d\phi, \end{equation*}
where $F(r)$ is a real-valued function with nonvanishing derivative, arise when constructing asymptotic solutions of problems with nonstandard characteristics such as the Cauchy problem with spatially localized initial data for the wave equation with velocity degenerating on the boundary of the domain; this problem describes the run-up of tsunami waves on a shallow beach in the linear approximation. The computation of the asymptotics of this integral as $h\to0$ encounters difficulties owing to the fact that the stationary points of the phase function $F(r\cos\phi)$ become degenerate for $r=0$. For this integral, we construct an asymptotics uniform with respect to $r$ in terms of the Bessel functions $\mathbf{J}_0(z)$ and $\mathbf{J}_1(z)$ of the first kind.
Keywords: rapidly oscillating integral, degeneration of stationary points, uniform asymptotics, Bessel function, wave equation.
Funding agency Grant number
Russian Science Foundation 16-11-10282
This work was supported by the Russian Science Foundation under grant 16-11-10282.
Received: 07.06.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 6, Pages 756–762
DOI: https://doi.org/10.1134/S0001434617110141
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. Yu. Dobrokhotov, V. E. Nazaikinskii, “On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory”, Mat. Zametki, 102:6 (2017), 828–835; Math. Notes, 102:6 (2017), 756–762
Citation in format AMSBIB
\Bibitem{DobNaz17}
\by S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii
\paper On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 6
\pages 828--835
\mathnet{http://mi.mathnet.ru/mzm11716}
\crossref{https://doi.org/10.4213/mzm11716}
\elib{https://elibrary.ru/item.asp?id=30737867}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 6
\pages 756--762
\crossref{https://doi.org/10.1134/S0001434617110141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418838500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039455205}
Linking options:
  • https://www.mathnet.ru/eng/mzm11716
  • https://doi.org/10.4213/mzm11716
  • https://www.mathnet.ru/eng/mzm/v102/i6/p828
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :61
    References:58
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024