Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 5, Pages 647–655
DOI: https://doi.org/10.4213/mzm11710
(Mi mzm11710)
 

This article is cited in 13 scientific papers (total in 13 papers)

Trace and Differences of Idempotents in $C^*$-Algebras

A. M. Bikchentaev

Kazan (Volga Region) Federal University
References:
Abstract: Let $\varphi$ be a trace on a unital $C^*$-algebra $\mathcal{A}$, let $\mathfrak{M}_{\varphi}$ be the ideal of definition of the trace $\varphi$, and let $P,Q \in \mathcal{A}$ be idempotents such that $QP=P$. If $Q \in \mathfrak{M}_{\varphi}$, then $P \in \mathfrak{M}_{\varphi}$ and $0 \le \varphi(P) \le \varphi(Q)$. If $Q-P \in \mathfrak{M}_{\varphi}$, then $\varphi(Q-P)\in \mathbb{R}^+$. Let $A,B\in \mathcal{A}$ be tripotents. If $AB=B$ and $A\in \mathfrak{M}_{\varphi}$, then $B \in \mathfrak{M}_{\varphi}$ and $0 \le \varphi (B^2)\le \varphi (A^2)<+\infty$. Let $\mathcal{A}$ be a von Neumann algebra. Then
$$ \varphi(|PQ-QP|)\le \min\{\varphi(P),\varphi(Q),\varphi(|P-Q|)\} $$
for all projections $P,Q \in \mathcal{A}$. The following conditions are equivalent for a positive normal functional $\varphi$ on a von Neumann algebra $\mathcal{A}$:
(i) $\varphi $ is a trace;
(ii) $\varphi(Q-P) \in \mathbb{R}^+$ for all idempotents $P,Q \in \mathcal{A}$ with $QP=P$;
(iii) $ \varphi(|PQ-QP|) \le \min\{\varphi(P),\varphi(Q)\}$ for all projections $P,Q \in \mathcal{A}$;
(iv) $\varphi(PQ+QP) \le \varphi(PQP+QPQ)$ for all projections $P,Q \in \mathcal{A}$.
Keywords: Hilbert space, linear operator, idempotent, tripotent, projection, trace-class operators, commutator, von Neumann algebra, $C^*$-algebra, trace.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 1.9773.2017/8.9
The work was completed at the expense of a subsidy allocated to Kazan Federal University to fulfill the state task in the field of scientific activity (1.9773.2017/8.9).
Received: 01.06.2017
English version:
Mathematical Notes, 2019, Volume 105, Issue 5, Pages 641–648
DOI: https://doi.org/10.1134/S0001434619050018
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. M. Bikchentaev, “Trace and Differences of Idempotents in $C^*$-Algebras”, Mat. Zametki, 105:5 (2019), 647–655; Math. Notes, 105:5 (2019), 641–648
Citation in format AMSBIB
\Bibitem{Bik19}
\by A.~M.~Bikchentaev
\paper Trace and Differences of Idempotents in $C^*$-Algebras
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 5
\pages 647--655
\mathnet{http://mi.mathnet.ru/mzm11710}
\crossref{https://doi.org/10.4213/mzm11710}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3951586}
\elib{https://elibrary.ru/item.asp?id=37424219}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 5
\pages 641--648
\crossref{https://doi.org/10.1134/S0001434619050018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000473246800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068130010}
Linking options:
  • https://www.mathnet.ru/eng/mzm11710
  • https://doi.org/10.4213/mzm11710
  • https://www.mathnet.ru/eng/mzm/v105/i5/p647
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:961
    Full-text PDF :192
    References:394
    First page:374
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024