Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 4, Pages 595–621
DOI: https://doi.org/10.4213/mzm11707
(Mi mzm11707)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent

I. I. Sharapudinovabc

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences
c Daghestan State Pedagogical University
Full-text PDF (642 kB) Citations (1)
References:
Abstract: The problem of the basis property of ultraspherical Jacobi polynomials in a Lebesgue space with variable exponent is studied. We obtain sufficient conditions on the variable exponent $p(x)>1$ that guarantee the uniform boundedness of the sequence $S_n^{\alpha,\alpha}(f)$, $n=0,1,\dots$, of Fourier sums with respect to the ultraspherical Jacobi polynomials $P_k^{\alpha,\alpha}(x)$ in the weighted Lebesgue space $L_\mu^{p(x)}([-1,1])$ with weight $\mu=\mu(x)=(1-x^2)^\alpha$, where $\alpha>-1/2$. The case $\alpha=-1/2$ is studied separately. It is shown that, for the uniform boundedness of the sequence $S_n^{-1/2,-1/2}(f)$, $n=0,1,\dots$, of Fourier–Chebyshev sums in the space $L_\mu^{p(x)}([-1,1])$ with $\mu(x)=(1-x^2)^{-1/2}$, it suffices and, in a certain sense, necessary that the variable exponent $p$ satisfy the Dini–Lipschitz condition of the form
$$ |p(x)-p(y)|\le \frac{d}{-\ln|x-y|}\mspace{2mu}, \qquad\text{where}\quad |x-y|\le \frac{1}{2},\quad x,y\in[-1,1],\quad d>0, $$
and the condition $p(x)>1$ for all $x\in[-1,1]$.
Keywords: the basis property of ultraspherical polynomials, Fourier–Jacobi sums, Fourier–Chebyshev sums, convergence in a weighted Lebesgue space with variable exponent, Dini–Lipschitz condition.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00486
This work was supported by the Russian Foundation for Basic Research under grant 16-01-00486.
Received: 12.10.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 4, Pages 616–638
DOI: https://doi.org/10.1134/S0001434619090293
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: I. I. Sharapudinov, “The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent”, Mat. Zametki, 106:4 (2019), 595–621; Math. Notes, 106:4 (2019), 616–638
Citation in format AMSBIB
\Bibitem{Sha19}
\by I.~I.~Sharapudinov
\paper The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 4
\pages 595--621
\mathnet{http://mi.mathnet.ru/mzm11707}
\crossref{https://doi.org/10.4213/mzm11707}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017572}
\elib{https://elibrary.ru/item.asp?id=41709455}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 4
\pages 616--638
\crossref{https://doi.org/10.1134/S0001434619090293}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492034300029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074173392}
Linking options:
  • https://www.mathnet.ru/eng/mzm11707
  • https://doi.org/10.4213/mzm11707
  • https://www.mathnet.ru/eng/mzm/v106/i4/p595
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :43
    References:54
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024