Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 3, Pages 336–345
DOI: https://doi.org/10.4213/mzm11701
(Mi mzm11701)
 

This article is cited in 6 scientific papers (total in 6 papers)

Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces

O. V. Besov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (499 kB) Citations (6)
References:
Abstract: An embedding theorem for spaces of functions of positive smoothness defined on irregular domains of n-dimensional Euclidean space in Lebesgue spaces is proved. The statement of the theorem depends on the geometric parameters of the domains of the functions.
Keywords: embedding theorem, spaces of functions of positive smoothness, irregular domain, Lebesgue spaces.
Funding agency Grant number
Russian Science Foundation 14-11-00443
This work was supported by the Russian Science Foundation under grant 14-11-00443.
Received: 28.05.2017
Revised: 18.09.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 3, Pages 348–356
DOI: https://doi.org/10.1134/S0001434618030021
Bibliographic databases:
Document Type: Article
UDC: 517.518.23
Language: Russian
Citation: O. V. Besov, “Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces”, Mat. Zametki, 103:3 (2018), 336–345; Math. Notes, 103:3 (2018), 348–356
Citation in format AMSBIB
\Bibitem{Bes18}
\by O.~V.~Besov
\paper Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Spaces
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 3
\pages 336--345
\mathnet{http://mi.mathnet.ru/mzm11701}
\crossref{https://doi.org/10.4213/mzm11701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3769200}
\elib{https://elibrary.ru/item.asp?id=32641316}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 3
\pages 348--356
\crossref{https://doi.org/10.1134/S0001434618030021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046346300}
Linking options:
  • https://www.mathnet.ru/eng/mzm11701
  • https://doi.org/10.4213/mzm11701
  • https://www.mathnet.ru/eng/mzm/v103/i3/p336
  • This publication is cited in the following 6 articles:
    1. O. V. Besov, “Embeddings of spaces of functions of positive smoothness on irregular domains”, Dokl. Math., 99:1 (2019), 31–35  crossref  mathscinet  isi
    2. O. V. Besov, “Embeddings of Spaces of Functions of Positive Smoothness on Irregular Domains”, Math. Notes, 106:4 (2019), 501–513  mathnet  crossref  crossref  mathscinet  isi  elib
    3. O. V. Besov, “Embeddings for weighted spaces of functions of positive smoothness on irregular domains into Lebesgue spaces”, Dokl. Math., 97:3 (2018), 236–239  mathnet  crossref  crossref  mathscinet  mathscinet  zmath  isi  elib  scopus
    4. O. V. Besov, “Embeddings of Weighted Spaces of Functions of Positive Smoothness on Irregular Domains in Lebesgue Space”, Math. Notes, 104:6 (2018), 799–809  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Sawano Y., Theory of Besov Spaces, Developments in Mathematics, 56, Springer International Publishing Ag, 2018  crossref  mathscinet  zmath  isi
    6. Yoshihiro Sawano, Developments in Mathematics, 56, Theory of Besov Spaces, 2018, 709  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:590
    Full-text PDF :65
    References:79
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025