|
This article is cited in 3 scientific papers (total in 3 papers)
Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk
P. A. Borodin Lomonosov Moscow State University
Abstract:
Given a function $h$ analytic in the unit disk $D$, we study the density in the space $A(D)$ of functions analytic inside $D$ of the set $S(h,E)$ of sums of the form $\sum_k\lambda_kh(\lambda_kz)$ with parameters $\lambda_k\in E$, where $E$ is a compact subset of $\overline D$. It is proved, in particular, that if the compact set $E$ “surrounds” the point $0$ and all Taylor coefficients of the function $h$ are nonzero, then $S(h,E)$ is dense in $A(D)$.
Keywords:
approximation, analytic function, density, $h$-sum.
Received: 06.05.2017 Revised: 16.10.2017
Citation:
P. A. Borodin, “Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk”, Mat. Zametki, 104:1 (2018), 3–10; Math. Notes, 104:1 (2018), 3–9
Linking options:
https://www.mathnet.ru/eng/mzm11666https://doi.org/10.4213/mzm11666 https://www.mathnet.ru/eng/mzm/v104/i1/p3
|
Statistics & downloads: |
Abstract page: | 564 | Full-text PDF : | 78 | References: | 59 | First page: | 41 |
|