Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 1, Pages 133–147
DOI: https://doi.org/10.4213/mzm11651
(Mi mzm11651)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials

I. A. Shakirov

Naberezhnye Chelny State Pedagogical University
Full-text PDF (521 kB) Citations (1)
References:
Abstract: The asymptotic behavior of Lebesgue functions of trigonometric Lagrange interpolation polynomials constructed on an even number of nodes is studied. For these functions, asymptotic formulas involving concrete simplest trigonometric and algebraic-trigonometric polynomials were first obtained.
Keywords: Lagrange polynomials, Lebesgue functions and constants, asymptotic formula for a Lebesgue function, error function.
Received: 16.03.2014
Revised: 27.01.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 1, Pages 111–123
DOI: https://doi.org/10.1134/S0001434617070124
Bibliographic databases:
Document Type: Article
UDC: 591.65
Language: Russian
Citation: I. A. Shakirov, “Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials”, Mat. Zametki, 102:1 (2017), 133–147; Math. Notes, 102:1 (2017), 111–123
Citation in format AMSBIB
\Bibitem{Sha17}
\by I.~A.~Shakirov
\paper Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 1
\pages 133--147
\mathnet{http://mi.mathnet.ru/mzm11651}
\crossref{https://doi.org/10.4213/mzm11651}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3670216}
\elib{https://elibrary.ru/item.asp?id=29437460}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 1
\pages 111--123
\crossref{https://doi.org/10.1134/S0001434617070124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413842800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032342469}
Linking options:
  • https://www.mathnet.ru/eng/mzm11651
  • https://doi.org/10.4213/mzm11651
  • https://www.mathnet.ru/eng/mzm/v102/i1/p133
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :141
    References:67
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024