Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 5, Pages 775–788
DOI: https://doi.org/10.4213/mzm11640
(Mi mzm11640)
 

This article is cited in 10 scientific papers (total in 10 papers)

Integral Operators with Homogeneous Kernels in Grand Lebesgue Spaces

S. M. Umarkhadzhievab

a Academy of Sciences of Chechen Republic
b Complex Research Institute named after Kh. I. Ibragimov, Russian Academy of Sciences
References:
Abstract: Sufficient conditions on the kernel and the grandizer that ensure the boundedness of integral operators with homogeneous kernels in grand Lebesgue spaces on $\mathbb R^n$ as well as an upper bound for their norms are obtained. For some classes of grandizers, necessary conditions and lower bounds for the norm of these operators are also obtained. In the case of a radial kernel, stronger estimates are established in terms of one-dimensional grand norms of spherical means of the function. A sufficient condition for the boundedness of the operator with homogeneous kernel in classical Lebesgue spaces with arbitrary radial weight is obtained. As an application, boundedness in grand spaces of the one-dimensional operator of fractional Riemann–Liouville integration and of a multidimensional Hilbert-type operator is studied.
Keywords: integral operator with homogeneous kernel, grand Lebesgue space, two-sided estimate, spherical mean, Hilbert-type operator, fractional integration operator.
Received: 10.04.2017
Revised: 24.05.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 5, Pages 710–721
DOI: https://doi.org/10.1134/S0001434617110104
Bibliographic databases:
Document Type: Article
UDC: 517.982+517.983
Language: Russian
Citation: S. M. Umarkhadzhiev, “Integral Operators with Homogeneous Kernels in Grand Lebesgue Spaces”, Mat. Zametki, 102:5 (2017), 775–788; Math. Notes, 102:5 (2017), 710–721
Citation in format AMSBIB
\Bibitem{Uma17}
\by S.~M.~Umarkhadzhiev
\paper Integral Operators with Homogeneous Kernels
in Grand Lebesgue Spaces
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 5
\pages 775--788
\mathnet{http://mi.mathnet.ru/mzm11640}
\crossref{https://doi.org/10.4213/mzm11640}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716510}
\elib{https://elibrary.ru/item.asp?id=30512317}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 5
\pages 710--721
\crossref{https://doi.org/10.1134/S0001434617110104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418838500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039412274}
Linking options:
  • https://www.mathnet.ru/eng/mzm11640
  • https://doi.org/10.4213/mzm11640
  • https://www.mathnet.ru/eng/mzm/v102/i5/p775
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :45
    References:47
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024