Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 3, Pages 396–408
DOI: https://doi.org/10.4213/mzm116
(Mi mzm116)
 

This article is cited in 8 scientific papers (total in 8 papers)

Application of Conformal Mappings to Inequalities for Trigonometric Polynomials

A. V. Olesov

Maritime State University named after G. I. Nevelskoi
Full-text PDF (214 kB) Citations (8)
References:
Abstract: In this paper, we obtain inequalities for trigonometric and algebraic polynomials supplementing and strengthening the classical results going back to papers of S. N. Bernstein and I. I. Privalov. The method of proof is based on the construction of the conformal and univalent mapping from a given trigonometric polynomial and on the application of results of the geometric theory of functions of a complex variable to this mapping.
Received: 21.07.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 3, Pages 368–378
DOI: https://doi.org/10.1023/B:MATN.0000043464.14845.88
Bibliographic databases:
UDC: 512.62+517.54
Language: Russian
Citation: A. V. Olesov, “Application of Conformal Mappings to Inequalities for Trigonometric Polynomials”, Mat. Zametki, 76:3 (2004), 396–408; Math. Notes, 76:3 (2004), 368–378
Citation in format AMSBIB
\Bibitem{Ole04}
\by A.~V.~Olesov
\paper Application of Conformal Mappings to Inequalities for Trigonometric Polynomials
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 3
\pages 396--408
\mathnet{http://mi.mathnet.ru/mzm116}
\crossref{https://doi.org/10.4213/mzm116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2113082}
\zmath{https://zbmath.org/?q=an:1074.41008}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 3
\pages 368--378
\crossref{https://doi.org/10.1023/B:MATN.0000043464.14845.88}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224874900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-5044228215}
Linking options:
  • https://www.mathnet.ru/eng/mzm116
  • https://doi.org/10.4213/mzm116
  • https://www.mathnet.ru/eng/mzm/v76/i3/p396
  • This publication is cited in the following 8 articles:
    1. A. V. Olesov, “Inequalities for majorizing analytic functions and their applications to rational trigonometric functions and polynomials”, Sb. Math., 205:10 (2014), 1413–1441  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Nagy B., Totik V., “Bernstein's Inequality for Algebraic Polynomials on Circular Arcs”, Constr. Approx., 37:2 (2013), 223–232  crossref  mathscinet  zmath  isi  scopus  scopus
    3. S. I. Kalmykov, “On polynomials and rational functions normalized on the circular arcs”, J. Math. Sci. (N. Y.), 200:5 (2014), 577–585  mathnet  crossref
    4. L. S. Maergoiz, N. N. Rybakova, “Chebyshev polynomials with zeros on a circle and adjacent problems”, St. Petersburg Math. J., 25:6 (2014), 965–979  mathnet  crossref  mathscinet  zmath  isi  elib
    5. V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. V. N. Dubinin, S. I. Kalmukov, “On polynomials with constraints on circular arcs”, J. Math. Sci. (N. Y.), 184:6 (2012), 703–708  mathnet  crossref
    7. V. N. Dubinin, D. B. Karp, V. A. Shlyk, “Izbrannye zadachi geometricheskoi teorii funktsii i teorii potentsiala”, Dalnevost. matem. zhurn., 8:1 (2008), 46–95  mathnet  elib
    8. V. N. Dubinin, “Schwarz's lemma and estimates of coefficients for regular functions with free domain of definition”, Sb. Math., 196:11 (2005), 1605–1625  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:450
    Full-text PDF :245
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025