Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 5, Pages 700–720
DOI: https://doi.org/10.4213/mzm11594
(Mi mzm11594)
 

This article is cited in 4 scientific papers (total in 4 papers)

Homogenization of a Nonstationary Model Equation of Electrodynamics

M. Dorodnyi, T. A. Suslina

Saint Petersburg State University
Full-text PDF (685 kB) Citations (4)
References:
Abstract: In $L_2(\mathbb R^3;\mathbb C^3)$, we consider a self-adjoint operator $\mathscr L_\varepsilon$, $\varepsilon >0$, generated by the differential expression $\operatorname{curl}\eta(\mathbf x /\varepsilon)^{-1}\operatorname{curl} -\nabla\nu(\mathbf x/\varepsilon)\operatorname{div}$. Here the matrix function $\eta(\mathbf x)$ with real entries and the real function $\nu(\mathbf x)$ are periodic with respect to some lattice, are positive definite, and are bounded. We study the behavior of the operators $\cos(\tau\mathscr L_\varepsilon^{1/2})$ and $\mathscr L_\varepsilon^{-1/2} \sin(\tau\mathscr L_\varepsilon^{1/2})$ for $\tau\in\mathbb R$ and small $\varepsilon$. It is shown that these operators converge to $\cos(\tau(\mathscr L^0)^{1/2})$ and $(\mathscr L^0)^{-1/2}\sin(\tau(\mathscr L^0)^{1/2})$, respectively, in the norm of the operators acting from the Sobolev space $H^s$ (with a suitable $s$) to $L_2$. Here $\mathscr L^0$ is an effective operator with constant coefficients. Error estimates are obtained and the sharpness of the result with respect to the type of operator norm is studied. The results are used for homogenizing the Cauchy problem for the model hyperbolic equation $\partial^2_\tau\mathbf v_\varepsilon =-\mathscr L_\varepsilon\mathbf v_\varepsilon$, $\operatorname{div}\mathbf v_\varepsilon=0$, appearing in electrodynamics. We study the application to a nonstationary Maxwell system for the case in which the magnetic permeability is equal to $1$ and the dielectric permittivity is given by the matrix $\eta(\mathbf x/\varepsilon)$.
Keywords: periodic differential operator, homogenization, operator error estimate, nonstationary Maxwell system.
Funding agency Grant number
Russian Science Foundation 17-11-01069
This work was supported by the Russian Science Foundation under grant 17-11-01069.
Received: 10.04.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 5, Pages 645–663
DOI: https://doi.org/10.1134/S0001434617110050
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: M. Dorodnyi, T. A. Suslina, “Homogenization of a Nonstationary Model Equation of Electrodynamics”, Mat. Zametki, 102:5 (2017), 700–720; Math. Notes, 102:5 (2017), 645–663
Citation in format AMSBIB
\Bibitem{DorSus17}
\by M.~Dorodnyi, T.~A.~Suslina
\paper Homogenization of a Nonstationary Model Equation
of Electrodynamics
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 5
\pages 700--720
\mathnet{http://mi.mathnet.ru/mzm11594}
\crossref{https://doi.org/10.4213/mzm11594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716505}
\elib{https://elibrary.ru/item.asp?id=30512312}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 5
\pages 645--663
\crossref{https://doi.org/10.1134/S0001434617110050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418838500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039450816}
Linking options:
  • https://www.mathnet.ru/eng/mzm11594
  • https://doi.org/10.4213/mzm11594
  • https://www.mathnet.ru/eng/mzm/v102/i5/p700
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:538
    Full-text PDF :55
    References:54
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024