Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 6, Pages 836–843
DOI: https://doi.org/10.4213/mzm11586
(Mi mzm11586)
 

This article is cited in 3 scientific papers (total in 3 papers)

Bounded Composition Operator on Lorentz Spaces

N. A. Evseevabc

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
c Peoples Friendship University of Russia, Moscow
Full-text PDF (484 kB) Citations (3)
References:
Abstract: We study composition operators on Lorentz spaces. In particular, we obtain necessary and sufficient conditions under which a measurable mapping induces a bounded composition operator.
Keywords: composition operator, Lorentz spaces, measurable mappings.
Funding agency Grant number
Russian Science Foundation 16-41-02004
This work was carried out at the Peoples' Friendship University of Russia and supported by the Russian Science Foundation under grant 16-41-02004.
Received: 16.03.2017
Revised: 30.03.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 6, Pages 763–769
DOI: https://doi.org/10.1134/S0001434617110153
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: N. A. Evseev, “Bounded Composition Operator on Lorentz Spaces”, Mat. Zametki, 102:6 (2017), 836–843; Math. Notes, 102:6 (2017), 763–769
Citation in format AMSBIB
\Bibitem{Evs17}
\by N.~A.~Evseev
\paper Bounded Composition Operator on Lorentz Spaces
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 6
\pages 836--843
\mathnet{http://mi.mathnet.ru/mzm11586}
\crossref{https://doi.org/10.4213/mzm11586}
\elib{https://elibrary.ru/item.asp?id=30737870}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 6
\pages 763--769
\crossref{https://doi.org/10.1134/S0001434617110153}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418838500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039422028}
Linking options:
  • https://www.mathnet.ru/eng/mzm11586
  • https://doi.org/10.4213/mzm11586
  • https://www.mathnet.ru/eng/mzm/v102/i6/p836
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :52
    References:60
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024