Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 4, Pages 519–535
DOI: https://doi.org/10.4213/mzm11563
(Mi mzm11563)
 

This article is cited in 3 scientific papers (total in 3 papers)

Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications

V. P. Zastavnyi, A. Manov

Donetsk National University
Full-text PDF (587 kB) Citations (3)
References:
Abstract: Given $\alpha\in(0,1)$ and $c=h+i\beta$, $h,\beta\in\mathbb R$, the function $f_{\alpha,c}\colon\mathbb R\to\mathbb C$ defined as follows is considered: (1) $f_{\alpha,c}$ is Hermitian, i.e., $f_{\alpha,c}(-x)=\overline{f_{\alpha,c}(x)}$, $x\in\mathbb R$; (2) $f_{\alpha,c}(x)=0$ for $x>1$; moreover, on each of the closed intervals $[0,\alpha]$ and $[\alpha,1]$, the function $f_{\alpha,c}$ is linear and satisfies the conditions $f_{\alpha,c}(0)=1$, $f_{\alpha,c}(\alpha)=c$, and $f_{\alpha,c}(1)=0$. It is proved that the complex piecewise linear function $f_{\alpha,c}$ is positive definite on $\mathbb R$ if and only if
$$ m(\alpha)\le h\le 1-\alpha\quad \text{and}\quad |\beta|\le\gamma(\alpha,h), $$
where
$$ m(\alpha)= \begin{cases} 0{} &\text{if } 1/\alpha\notin\mathbb N, \\ -\alpha{} &\text{if }1/\alpha\in\mathbb N. \end{cases} $$
If $m(\alpha)<h<1-\alpha$ and $\alpha\in\mathbb Q$, then $\gamma(\alpha,h)>0$; otherwise, $\gamma(\alpha,h)=0$. This result is used to obtain a criterion for the complete monotonicity of functions of a special form and prove a sharp inequality for trigonometric polynomials.
Keywords: positive definite function, piecewise linear function, completely monotone function, Bochner–Khinchine theorem, Bernstein's inequality.
Received: 22.02.2017
Revised: 23.05.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 4, Pages 550–564
DOI: https://doi.org/10.1134/S0001434618030227
Bibliographic databases:
Document Type: Article
UDC: 517.5+519.213
Language: Russian
Citation: V. P. Zastavnyi, A. Manov, “Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications”, Mat. Zametki, 103:4 (2018), 519–535; Math. Notes, 103:4 (2018), 550–564
Citation in format AMSBIB
\Bibitem{ZasMan18}
\by V.~P.~Zastavnyi, A.~Manov
\paper Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 4
\pages 519--535
\mathnet{http://mi.mathnet.ru/mzm11563}
\crossref{https://doi.org/10.4213/mzm11563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780055}
\elib{https://elibrary.ru/item.asp?id=32641340}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 4
\pages 550--564
\crossref{https://doi.org/10.1134/S0001434618030227}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046355945}
Linking options:
  • https://www.mathnet.ru/eng/mzm11563
  • https://doi.org/10.4213/mzm11563
  • https://www.mathnet.ru/eng/mzm/v103/i4/p519
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024