|
A Logarithmic Inequality
G. V. Kalacheva, S. Yu. Sadov a Lomonosov Moscow State University
Abstract:
The inequality \begin{equation*} \ln\ln(r-\ln r)+1 <\min_{0<x\le r-1} (\ln x+ x^{-1}\ln(r-x)) <\ln\ln(r-\ln(r-2^{-1}\ln r))+1, \end{equation*} where $r>2$, is proved. A combinatorial optimization problem which involves the function to be minimized is described.
Keywords:
logarithmic inequality, two-sided estimate, extremal graph.
Received: 12.02.2017 Revised: 23.04.2017
Citation:
G. V. Kalachev, S. Yu. Sadov, “A Logarithmic Inequality”, Mat. Zametki, 103:2 (2018), 210–222; Math. Notes, 103:2 (2018), 209–220
Linking options:
https://www.mathnet.ru/eng/mzm11556https://doi.org/10.4213/mzm11556 https://www.mathnet.ru/eng/mzm/v103/i2/p210
|
|