Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 2, paper published in the English version journal (Mi mzm11546)  

This article is cited in 3 scientific papers (total in 3 papers)

Papers published in the English version of the journal

An Extension of Calabi's Correspondence between the Solutions of Two Bernstein Problems to More General Elliptic Nonlinear Equations

José A. S. Pelegrina, Alfonso Romeroa, Rafael M. Rubiob

a Departamento de Geometría y Topología, Universidad de Granada, Granada, 18071 Spain
b Departamento de Matemáticas, Campus de Rabanales, Universidad de Córdoba, Córdoba, 14071 Spain
Citations (3)
Abstract: A new correspondence between the solutions of the minimal surface equation in a certain $3$-dimensional Riemannian warped product and the solutions of the maximal surface equation in a $3$-dimensional standard static space-time is given. This widely extends the classical duality between minimal graphs in $3$-dimensional Euclidean space and maximal graphs in $3$-dimensional Lorentz–Minkowski space-time. We highlight the fact that this correspondence can be restricted to the respective classes of entire solutions. As an application, a Calabi–Bernstein-type result for certain static standard space-times is proved.
Keywords: minimal surface equation, maximal surface equation, Riemannian warped product manifold, standard static space-time.
Funding agency Grant number
European Regional Development Fund MTM2016-78807-C2-1-P
Ministerio de Economía y Competitividad de España
This work was supported in part by Spanish MINECO and ERDF project MTM2016-78807-C2-1-P.
Received: 03.02.2017
Revised: 22.12.2017
English version:
Mathematical Notes, 2019, Volume 105, Issue 2, Pages 280–284
DOI: https://doi.org/10.1134/S0001434619010309
Bibliographic databases:
Document Type: Article
Language: English
Citation: José A. S. Pelegrin, Alfonso Romero, Rafael M. Rubio, “An Extension of Calabi's Correspondence between the Solutions of Two Bernstein Problems to More General Elliptic Nonlinear Equations”, Math. Notes, 105:2 (2019), 280–284
Citation in format AMSBIB
\Bibitem{PelRomRub19}
\by Jos\'e~A.~S.~Pelegrin, Alfonso~Romero, Rafael~M.~Rubio
\paper An Extension of Calabi's Correspondence
between the Solutions of Two Bernstein Problems
to More General Elliptic Nonlinear Equations
\jour Math. Notes
\yr 2019
\vol 105
\issue 2
\pages 280--284
\mathnet{http://mi.mathnet.ru/mzm11546}
\crossref{https://doi.org/10.1134/S0001434619010309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3938722}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464727500030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064269712}
Linking options:
  • https://www.mathnet.ru/eng/mzm11546
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:145
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024