Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 1, Pages 111–119
DOI: https://doi.org/10.4213/mzm11544
(Mi mzm11544)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the Calabi–Yau Compactifications of Toric Landau–Ginzburg Models for Fano Complete Intersections

V. V. Przyjalkowski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (487 kB) Citations (8)
References:
Abstract: It is well known that Givental's toric Landau–Ginzburg models for Fano complete intersections admit Calabi–Yau compactifications. We give an alternative proof of this fact. As a consequence of this proof, we obtain a description of the fibers over infinity of the compactified toric Landau–Ginzburg models.
Keywords: Calabi–Yau compactification, toric Landau–Ginzburg model, complete intersection.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Received: 30.01.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 1, Pages 104–110
DOI: https://doi.org/10.1134/S0001434618010121
Bibliographic databases:
Document Type: Article
UDC: 512.76
Language: Russian
Citation: V. V. Przyjalkowski, “On the Calabi–Yau Compactifications of Toric Landau–Ginzburg Models for Fano Complete Intersections”, Mat. Zametki, 103:1 (2018), 111–119; Math. Notes, 103:1 (2018), 104–110
Citation in format AMSBIB
\Bibitem{Prz18}
\by V.~V.~Przyjalkowski
\paper On the Calabi--Yau Compactifications of Toric Landau--Ginzburg Models for Fano Complete Intersections
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 1
\pages 111--119
\mathnet{http://mi.mathnet.ru/mzm11544}
\crossref{https://doi.org/10.4213/mzm11544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3740290}
\zmath{https://zbmath.org/?q=an:06893876}
\elib{https://elibrary.ru/item.asp?id=30762112}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 1
\pages 104--110
\crossref{https://doi.org/10.1134/S0001434618010121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427616800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042313499}
Linking options:
  • https://www.mathnet.ru/eng/mzm11544
  • https://doi.org/10.4213/mzm11544
  • https://www.mathnet.ru/eng/mzm/v103/i1/p111
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024