Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 5, Pages 647–668
DOI: https://doi.org/10.4213/mzm11530
(Mi mzm11530)
 

This article is cited in 3 scientific papers (total in 3 papers)

Finding the Coefficients in the New Representation of the Solution of the Riemann–Hilbert Problem Using the Lauricella Function

S. I. Bezrodnykhabc

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
b Peoples Friendship University of Russia, Moscow
c Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute
Full-text PDF (706 kB) Citations (3)
References:
Abstract: The solution of the Riemann–Hilbert problem for an analytic function in a canonical domain for the case in which the data of the problem is piecewise constant can be expressed as a Christoffel–Schwartz integral. In this paper, we present an explicit expression for the parameters of this integral obtained by using a Jacobi-type formula for the Lauricella generalized hypergeometric function $F_D^{(N)}$. The results can be applied to a number of problems, including those in plasma physics and the mechanics of deformed solids.
Keywords: Riemann–Hilbert problem with piecewise constant data, Lauricella function $F_D^{(N)}$, Jacobi-type formula, Christoffel–Schwartz integral.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00781
16-07-01195
Ministry of Education and Science of the Russian Federation 5-100
Russian Academy of Sciences - Federal Agency for Scientific Organizations
This work was supported by the Ministry of Education and Science of the Russian Federation on the “Program 5-100 to Improve the Competitiveness of RUDN University among the World's Leading Research and Educational Centers in 2016–2020,” by the Russian Foundation for Basic Research under grants 16-01-00781 and 16-07-01195, and by the RAN program “Modern Problems of Theoretical Mathematics” under project “Optimal Algorithms for the Solution of Problems of Mathematical Physics.”
Received: 02.11.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 5, Pages 759–777
DOI: https://doi.org/10.1134/S0001434617050029
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. I. Bezrodnykh, “Finding the Coefficients in the New Representation of the Solution of the Riemann–Hilbert Problem Using the Lauricella Function”, Mat. Zametki, 101:5 (2017), 647–668; Math. Notes, 101:5 (2017), 759–777
Citation in format AMSBIB
\Bibitem{Bez17}
\by S.~I.~Bezrodnykh
\paper Finding the Coefficients in the New Representation of the Solution of the Riemann--Hilbert Problem Using the Lauricella Function
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 5
\pages 647--668
\mathnet{http://mi.mathnet.ru/mzm11530}
\crossref{https://doi.org/10.4213/mzm11530}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646472}
\elib{https://elibrary.ru/item.asp?id=29106608}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 5
\pages 759--777
\crossref{https://doi.org/10.1134/S0001434617050029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404236900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021287719}
Linking options:
  • https://www.mathnet.ru/eng/mzm11530
  • https://doi.org/10.4213/mzm11530
  • https://www.mathnet.ru/eng/mzm/v101/i5/p647
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1219
    Full-text PDF :92
    References:101
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024