Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 1, paper published in the English version journal (Mi mzm11529)  

This article is cited in 4 scientific papers (total in 4 papers)

Papers published in the English version of the journal

The Fermi–Dirac Distribution as a Model of a Thermodynamically Ideal Liquid. Phase Transition of the First Kind for Neutral Gases (Corresponding to NonpolarMolecules)

V. P. Maslov

National Research University Higher School of Economics, Moscow, Russia
Citations (4)
Abstract: In this paper, we introduce the notion of a thermodynamically ideal liquid and calculate the temperature below which it appears. This temperature is T=0.84Tc, where Tc is the critical temperature of a gas whose molecules are nonpolar. For such a gas, in a sufficiently wide neighborhood of the binodal, the isotherms of a gas and of a thermodynamically ideal liquid coincide with those of a van der Waals gas for the critical value of the compressibility factor Zc=3/8. In this sense, for T0.84Tc and the particular case Zc=3/8, the developed theory is a generalization of the van der Waals model. A new phase transition of the second kind at the point of zero activity is described.
Keywords: thermodynamically ideal liquid, van der Waals gas, binodal, spinodal, critical parameters, tropical analysis, Fermi–Dirac distribution, Bose statistics, virial expansion, phase transition.
Received: 16.11.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 1, Pages 100–114
DOI: https://doi.org/10.1134/S0001434617010102
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. P. Maslov, “The Fermi–Dirac Distribution as a Model of a Thermodynamically Ideal Liquid. Phase Transition of the First Kind for Neutral Gases (Corresponding to NonpolarMolecules)”, Math. Notes, 101:1 (2017), 100–114
Citation in format AMSBIB
\Bibitem{Mas17}
\by V.~P.~Maslov
\paper The Fermi–Dirac Distribution as a Model of a Thermodynamically Ideal Liquid. Phase Transition of the First Kind for Neutral Gases (Corresponding to NonpolarMolecules)
\jour Math. Notes
\yr 2017
\vol 101
\issue 1
\pages 100--114
\mathnet{http://mi.mathnet.ru/mzm11529}
\crossref{https://doi.org/10.1134/S0001434617010102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3635288}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396392700010}
\elib{https://elibrary.ru/item.asp?id=29482164}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014751663}
Linking options:
  • https://www.mathnet.ru/eng/mzm11529
  • This publication is cited in the following 4 articles:
    1. V. P. Maslov, “On the Transition of a Mesoscopic System to a Macroscopic System”, Math. Notes, 103:2 (2018), 316–318  mathnet  mathnet  crossref  mathscinet  mathscinet  isi  scopus
    2. V. P. Maslov, “The Relationship between the Fermi–Dirac Distribution and Statistical Distributions in Languages”, Math. Notes, 101:4 (2017), 645–659  mathnet  crossref  crossref  mathscinet  isi  elib
    3. V. P. Maslov, T. V. Maslova, “A generalized number theory problem applied to ideal liquids and to terminological lexis”, Russ. J. Math. Phys., 24:1 (2017), 96–110  crossref  mathscinet  zmath  isi  scopus
    4. V. P. Maslov, “A Generalization of a Classical Number-Theoretic Problem, Condensate of Zeros, and Phase Transition to an Amorphous Solid”, Math. Notes, 101:3 (2017), 488–496  mathnet  mathnet  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:311
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025