Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 6, Pages 911–918
DOI: https://doi.org/10.4213/mzm11520
(Mi mzm11520)
 

This article is cited in 12 scientific papers (total in 12 papers)

On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space

D. V. Trescheva, A. A. Shkalikovb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
References:
Abstract: Conditions for the operator differential equation ˙x=Ax possessing a quadratic first integral (1/2)(Bx,x) to be Hamiltonian are obtained. In the finite-dimensional case, it suffices to require that kerBkerA. For a bounded linear mapping xΩx possessing a first integral, sufficient conditions for the preservation of the (possibly degenerate) Poisson bracket are obtained.
Keywords: Hamiltonian system, Poisson bracket, symplectic structure.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03747
16-01-00706
The work of the first author was supported by the Russian Foundation for Basic Research under grant 15-01-03747. The work of the second author was supported by the Russian Foundation for Basic Research under grant 16-01-00706.
Received: 07.09.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 6, Pages 1033–1039
DOI: https://doi.org/10.1134/S0001434617050303
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: D. V. Treschev, A. A. Shkalikov, “On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space”, Mat. Zametki, 101:6 (2017), 911–918; Math. Notes, 101:6 (2017), 1033–1039
Citation in format AMSBIB
\Bibitem{TreShk17}
\by D.~V.~Treschev, A.~A.~Shkalikov
\paper On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 6
\pages 911--918
\mathnet{http://mi.mathnet.ru/mzm11520}
\crossref{https://doi.org/10.4213/mzm11520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3659562}
\elib{https://elibrary.ru/item.asp?id=29255130}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 6
\pages 1033--1039
\crossref{https://doi.org/10.1134/S0001434617050303}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404236900030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021286728}
Linking options:
  • https://www.mathnet.ru/eng/mzm11520
  • https://doi.org/10.4213/mzm11520
  • https://www.mathnet.ru/eng/mzm/v101/i6/p911
  • This publication is cited in the following 12 articles:
    1. V. V. Kozlov, “Quantization of linear systems of differential equations with a quadratic invariant in a Hilbert space”, Russian Math. Surveys, 76:2 (2021), 357–359  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. V. V. Kozlov, “Symplectic geometry of the Koopman operator”, Dokl. Math., 104:1 (2021), 175–179  mathnet  crossref  crossref  zmath  isi  elib
    3. V. V. Kozlov, “Linear Nonautonomous Systems of Differential Equations With a Quadratic Integral”, Differ. Equ., 57:2 (2021), 173–181  mathnet  crossref  mathscinet  isi  scopus
    4. V. V. Kozlov, “On the ergodic theory of equations of mathematical physics”, Russ. J. Math. Phys., 28:1 (2021), 73–83  crossref  mathscinet  isi
    5. V. V. Kozlov, “Linear system of differential equations with a quadratic invariant as the Schrödinger equation”, Dokl. Math., 103:1 (2021), 39–43  mathnet  crossref  crossref  zmath  isi  elib
    6. V. V. Kozlov, “Quadratic conservation laws for equations of mathematical physics”, Russian Math. Surveys, 75:3 (2020), 445–494  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. V. V. Kozlov, “The Liouville Equation as a Hamiltonian System”, Math. Notes, 108:3 (2020), 339–343  mathnet  crossref  crossref  mathscinet  isi  elib
    8. V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. V. E. Vladykina, A. A. Shkalikov, “Regular Ordinary Differential Operators with Involution”, Math. Notes, 106:5 (2019), 674–687  mathnet  crossref  crossref  mathscinet  isi  elib
    10. V. V. Kozlov, “Linear systems with quadratic integral and complete integrability of the Schrödinger equation”, Russian Math. Surveys, 74:5 (2019), 959–961  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Valery V. Kozlov, “Linear Hamiltonian Systems: Quadratic Integrals, Singular Subspaces and Stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46  mathnet  crossref  mathscinet
    12. V. V. Kozlov, “Multi-Hamiltonian property of a linear system with quadratic invariant”, St. Petersburg Mathematical Journal, 30:5 (2019), 877–883  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:891
    Full-text PDF :137
    References:95
    First page:75
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025