Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 5, Pages 700–715
DOI: https://doi.org/10.4213/mzm11489
(Mi mzm11489)
 

This article is cited in 10 scientific papers (total in 10 papers)

Uniform Asymptotics of the Boundary Values of the Solution in a Linear Problem on the Run-Up of Waves on a Shallow Beach

S. Yu. Dobrokhotovab, V. E. Nazaikinskiiab, A. A. Tolchennikovab

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
References:
Abstract: We consider the Cauchy problem with spatially localized initial data for a two-dimensional wave equation with variable velocity in a domain $\Omega$. The velocity is assumed to degenerate on the boundary $\partial\Omega$ of the domain as the square root of the distance to $\partial\Omega$. In particular, this problems describes the run-up of tsunami waves on a shallow beach in the linear approximation. Further, the problem contains a natural small parameter (the typical source-to-basin size ratio) and hence admits analysis by asymptotic methods. It was shown in the paper “Characteristics with singularities and the boundary values of the asymptotic solution of the Cauchy problem for a degenerate wave equation” [1] that the boundary values of the asymptotic solution of this problem given by a modified Maslov canonical operator on the Lagrangian manifold formed by the nonstandard characteristics associated with the problem can be expressed via the canonical operator on a Lagrangian submanifold of the cotangent bundle of the boundary. However, the problem as to how this restriction is related to the boundary values of the exact solution of the problem remained open. In the present paper, we show that if the initial perturbation is specified by a function rapidly decaying at infinity, then the restriction of such an asymptotic solution to the boundary gives the asymptotics of the boundary values of the exact solution in the uniform norm. To this end, we in particular prove a trace theorem for nonstandard Sobolev type spaces with degeneration at the boundary.
Keywords: wave equation, nonstandard characteristics, run-up on a shallow beach, localized source, asymptotics, boundary values, trace theorem, higher-order transport equations.
Funding agency Grant number
Russian Science Foundation 16-11-10282
Received: 02.12.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 5, Pages 802–814
DOI: https://doi.org/10.1134/S0001434617050066
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, “Uniform Asymptotics of the Boundary Values of the Solution in a Linear Problem on the Run-Up of Waves on a Shallow Beach”, Mat. Zametki, 101:5 (2017), 700–715; Math. Notes, 101:5 (2017), 802–814
Citation in format AMSBIB
\Bibitem{DobNazTol17}
\by S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii, A.~A.~Tolchennikov
\paper Uniform Asymptotics of the Boundary Values of the Solution in a~Linear Problem on the Run-Up of Waves on a~Shallow Beach
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 5
\pages 700--715
\mathnet{http://mi.mathnet.ru/mzm11489}
\crossref{https://doi.org/10.4213/mzm11489}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646476}
\elib{https://elibrary.ru/item.asp?id=29106612}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 5
\pages 802--814
\crossref{https://doi.org/10.1134/S0001434617050066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404236900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021262516}
Linking options:
  • https://www.mathnet.ru/eng/mzm11489
  • https://doi.org/10.4213/mzm11489
  • https://www.mathnet.ru/eng/mzm/v101/i5/p700
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:468
    Full-text PDF :52
    References:65
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024