Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 5, Pages 768–778
DOI: https://doi.org/10.4213/mzm11468
(Mi mzm11468)
 

This article is cited in 30 scientific papers (total in 30 papers)

A Regular Differential Operator with Perturbed Boundary Condition

M. A. Sadybekova, N. S. Imanbaevab

a Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan
b South Kazakhstan State Pedagogical institute
References:
Abstract: The operator L0 generated by a linear ordinary differential expression of nth order and regular boundary conditions of general form is considered on a closed interval. The characteristic determinant of the spectral problem for the operator L1, where L1 is an operator with the integral perturbation of one of its boundary conditions, is constructed, assuming that the unperturbed operator L0 possesses a system of eigenfunctions and associated functions generating an unconditional basis in L2(0,1). Using the obtained formula, we derive conclusions about the stability or instability of the unconditional basis properties of the system of eigenfunctions and associated functions of the problem under an integral perturbation of the boundary condition. The Samarskii–Ionkin problem with integral perturbation of its boundary condition is used as an example of the application of the formula. \renewcommand{\qed}
Keywords: basis, regular boundary condition, eigenvalue, root function, spectral problem, integral perturbation of the boundary condition, characteristic determinant.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan 0825/ГФ4
This work was supported by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan under grant 0825/GF4.
Received: 15.12.2016
Revised: 20.11.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 5, Pages 878–887
DOI: https://doi.org/10.1134/S0001434617050133
Bibliographic databases:
Document Type: Article
UDC: 517.927
PACS: 02.30.Jr, 02.30.Tb
Language: Russian
Citation: M. A. Sadybekov, N. S. Imanbaev, “A Regular Differential Operator with Perturbed Boundary Condition”, Mat. Zametki, 101:5 (2017), 768–778; Math. Notes, 101:5 (2017), 878–887
Citation in format AMSBIB
\Bibitem{SadIma17}
\by M.~A.~Sadybekov, N.~S.~Imanbaev
\paper A Regular Differential Operator with Perturbed Boundary Condition
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 5
\pages 768--778
\mathnet{http://mi.mathnet.ru/mzm11468}
\crossref{https://doi.org/10.4213/mzm11468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646481}
\elib{https://elibrary.ru/item.asp?id=29106617}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 5
\pages 878--887
\crossref{https://doi.org/10.1134/S0001434617050133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404236900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021285330}
Linking options:
  • https://www.mathnet.ru/eng/mzm11468
  • https://doi.org/10.4213/mzm11468
  • https://www.mathnet.ru/eng/mzm/v101/i5/p768
  • This publication is cited in the following 30 articles:
    1. Makhmud Sadybekov, Nurlan Imanbaev, “On System of Root Vectors of Perturbed Regular Second-Order Differential Operator Not Possessing Basis Property”, Mathematics, 11:20 (2023), 4364  crossref
    2. Wang M., Xiong Sh., Chen M., He P., “A Waveform Decomposition Technique Based on Wavelet Function and Differential Cuckoo Search Algorithm”, Soft Comput., 25:8 (2021), 5909–5923  crossref  mathscinet  isi  scopus
    3. D. M. Polyakov, “Nonlocal perturbation of a periodic problem for a second-order differential operator”, Differ. Equ., 57:1 (2021), 11–18  crossref  mathscinet  zmath  isi  scopus
    4. E. Providas, S. Zaoutsos, I. Faraslis, “Closed-form solutions of linear ordinary differential equations with general boundary conditions”, Axioms, 10:3 (2021), 226  crossref  isi  scopus
    5. N. S. Imanbaev, Y. Kurmysh, “On zeros of an entire function coinciding with exponential typequasi-polynomials, associated with a regular third-order differential operator on an interval”, Bull. Karaganda Univ-Math., 103:3 (2021), 44–53  crossref  isi
    6. D. Nurakhmetov, S. Jumabayev, A. Aniyarov, “Control of vibrations of a beam with nonlocal boundary conditions”, Int. J. Math. Phys.-Kazakhstan, 12:2 (2021), 45–49  crossref  isi
    7. E. Providas, I. N. Parasidis, Springer Optimization and Its Applications, 179, Mathematical Analysis in Interdisciplinary Research, 2021, 641  crossref  mathscinet
    8. Nurlan S. Imanbaev, “On a problem that does not have basis property of root vectors, associated with a perturbed regular operator of multiple differentiation”, Zhurn. SFU. Ser. Matem. i fiz., 13:5 (2020), 568–573  mathnet  crossref
    9. I. N. Parasidis, E. Providas, S. Zaoutsos, Springer Optimization and Its Applications, 159, Computational Mathematics and Variational Analysis, 2020, 299  crossref  mathscinet
    10. M. Kirane, M. A. Sadybekov, A. A. Sarsenbi, “On an inverse problem of reconstructing a subdiffusion process from nonlocal data”, Math. Meth. Appl. Sci., 42:6 (2019), 2043–2052  crossref  mathscinet  isi  scopus
    11. I. N. Parasidis, E. Providas, Springer Optimization and Its Applications, 146, Analysis and Operator Theory, 2019, 301  crossref  mathscinet
    12. B. Aibek, A. Aimakhanova, G. Besbaev, M. A. Sadybekov, “About one inverse problem of time fractional evolution with an involution perturbation”, International Conference on Analysis and Applied Mathematics (ICAAM 2018), AIP Conf. Proc., 1997, Amer. Inst. Phys., 2018, UNSP 020012-1  crossref  isi  scopus
    13. N. S. Imanbaev, “Distribution of eigenvalues of a third-order differential operator with strongly regular boundary conditions”, International Conference on Analysis and Applied Mathematics (ICAAM 2018), AIP Conf. Proc., 1997, Amer. Inst. Phys., 2018, UNSP 020027-1  crossref  isi  scopus
    14. M. A. Sadybekov, G. Dildabek, M. B. Ivanova, “One class of inverse problems for reconstructing the process of heat conduction from nonlocal data”, International Conference on Analysis and Applied Mathematics (ICAAM 2018), AIP Conf. Proc., 1997, Amer. Inst. Phys., 2018, UNSP 020069-1  crossref  mathscinet  isi  scopus
    15. A. S. Erdogan, D. Kusmangazinova, I. Orazov, M. A. Sadybekov, “On one problem for restoring the density of sources of the fractional heat conductivity process with respect to initial and final temperatures”, Bull. Karaganda Univ-Math., 91:3 (2018), 31–44  crossref  isi
    16. V. L. Kritskov, M. A. Sadybekov, A. M. Sarsenbi, “Nonlocal spectral problem for a second-order differential equation with an involution”, Bull. Karaganda Univ. Math., 91:3 (2018), 53–60  crossref  mathscinet  isi
    17. Sadybekov M.A., Dukenbayeva A.A., “On a Class of Direct and Inverse Problems For the Poisson Equation With Equality of Flows on Part of the Boundary”, AIP Conference Proceedings, 2048, eds. Pasheva V., Popivanov N., Venkov G., Amer Inst Physics, 2018, 040009  crossref  mathscinet  isi
    18. M. E. Akhymbek, M. A. Sadybekov, “Correct restrictions of first-order functional–differential equation”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conf. Proc., 1880, Amer. Inst. Phys., 2017, UNSP 050014  crossref  isi  scopus
    19. G. Dildabek, M. B. Saprygina, “Volterra property of an problem of the Frankl type for an parabolic–hyperbolic equation”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conf. Proc., 1880, Amer. Inst. Phys., 2017, UNSP 050011  crossref  isi  scopus
    20. N. S. Imanbaev, M. A. Sadybekov, “About characteristic determinant of one boundary value problem not having the basis property”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conf. Proc., 1880, Amer. Inst. Phys., 2017, UNSP 050002  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:657
    Full-text PDF :116
    References:98
    First page:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025