Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 5, Pages 768–778
DOI: https://doi.org/10.4213/mzm11468
(Mi mzm11468)
 

This article is cited in 30 scientific papers (total in 30 papers)

A Regular Differential Operator with Perturbed Boundary Condition

M. A. Sadybekova, N. S. Imanbaevab

a Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan
b South Kazakhstan State Pedagogical institute
References:
Abstract: The operator $\mathcal{L}_{0}$ generated by a linear ordinary differential expression of $n$th order and regular boundary conditions of general form is considered on a closed interval. The characteristic determinant of the spectral problem for the operator $\mathcal{L}_{1}$, where $\mathcal{L}_{1}$ is an operator with the integral perturbation of one of its boundary conditions, is constructed, assuming that the unperturbed operator $\mathcal{L}_{0}$ possesses a system of eigenfunctions and associated functions generating an unconditional basis in $L_{2}(0,1)$. Using the obtained formula, we derive conclusions about the stability or instability of the unconditional basis properties of the system of eigenfunctions and associated functions of the problem under an integral perturbation of the boundary condition. The Samarskii–Ionkin problem with integral perturbation of its boundary condition is used as an example of the application of the formula. \renewcommand{\qed}
Keywords: basis, regular boundary condition, eigenvalue, root function, spectral problem, integral perturbation of the boundary condition, characteristic determinant.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan 0825/ГФ4
This work was supported by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan under grant 0825/GF4.
Received: 15.12.2016
Revised: 20.11.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 5, Pages 878–887
DOI: https://doi.org/10.1134/S0001434617050133
Bibliographic databases:
Document Type: Article
UDC: 517.927
PACS: 02.30.Jr, 02.30.Tb
Language: Russian
Citation: M. A. Sadybekov, N. S. Imanbaev, “A Regular Differential Operator with Perturbed Boundary Condition”, Mat. Zametki, 101:5 (2017), 768–778; Math. Notes, 101:5 (2017), 878–887
Citation in format AMSBIB
\Bibitem{SadIma17}
\by M.~A.~Sadybekov, N.~S.~Imanbaev
\paper A Regular Differential Operator with Perturbed Boundary Condition
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 5
\pages 768--778
\mathnet{http://mi.mathnet.ru/mzm11468}
\crossref{https://doi.org/10.4213/mzm11468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646481}
\elib{https://elibrary.ru/item.asp?id=29106617}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 5
\pages 878--887
\crossref{https://doi.org/10.1134/S0001434617050133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404236900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021285330}
Linking options:
  • https://www.mathnet.ru/eng/mzm11468
  • https://doi.org/10.4213/mzm11468
  • https://www.mathnet.ru/eng/mzm/v101/i5/p768
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024