Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 2, Pages 236–247
DOI: https://doi.org/10.4213/mzm11423
(Mi mzm11423)
 

Hirzebruch Functional Equations and Krichever Complex Genera

I. V. Netayab

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b National Research University "Higher School of Economics" (HSE), Moscow
References:
Abstract: As is well known, the two-parameter Todd genus and the elliptic functions of level $d$ define $n$-multiplicative Hirzebruch genera if $d$ divides $n+ 1$. Both cases are special cases of the Krichever genera defined by the Baker–Akhiezer function. In the present paper, the inverse problem is solved. Namely, it is proved that only these properties define $n$-multiplicative Hirzebruch genera among all Krichever genera for all $n$.
Keywords: Hirzebruch genus, elliptic function, functional equation.
Funding agency Grant number
Russian Science Foundation 14-50-00150
This work was supported by the Russian Science Foundation under grant 14-50-00150, RSF IPPI.
Received: 21.10.2016
Revised: 14.04.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 2, Pages 232–242
DOI: https://doi.org/10.1134/S0001434618010248
Bibliographic databases:
Document Type: Article
UDC: 515.14
Language: Russian
Citation: I. V. Netay, “Hirzebruch Functional Equations and Krichever Complex Genera”, Mat. Zametki, 103:2 (2018), 236–247; Math. Notes, 103:2 (2018), 232–242
Citation in format AMSBIB
\Bibitem{Net18}
\by I.~V.~Netay
\paper Hirzebruch Functional Equations and Krichever Complex Genera
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 2
\pages 236--247
\mathnet{http://mi.mathnet.ru/mzm11423}
\crossref{https://doi.org/10.4213/mzm11423}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749608}
\elib{https://elibrary.ru/item.asp?id=32428091}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 2
\pages 232--242
\crossref{https://doi.org/10.1134/S0001434618010248}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427616800024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043776809}
Linking options:
  • https://www.mathnet.ru/eng/mzm11423
  • https://doi.org/10.4213/mzm11423
  • https://www.mathnet.ru/eng/mzm/v103/i2/p236
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :53
    References:48
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024