Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 3, Pages 355–368
DOI: https://doi.org/10.4213/mzm11412
(Mi mzm11412)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Positive Definiteness of Some Functions Related to the Schoenberg Problem

V. P. Zastavnyi, A. D. Manov

Donetsk National University
Full-text PDF (576 kB) Citations (4)
References:
Abstract: For a broad class of functions $f\colon[0,+\infty)\to\mathbb{R}$, we prove that the function $f(\rho^{\lambda}(x))$ is positive definite on a nontrivial real linear space $E$ if and only if $0\le\lambda\le \alpha(E,\rho)$. Here $\rho$ is a nonnegative homogeneous function on $E$ such that $\rho(x)\not\equiv 0$ and $\alpha(E,\rho)$ is the Schoenberg constant.
Keywords: positive definite function, completely monotone function, Schoenberg problem, Kuttner–Golubov problem, Fourier transform, Bochner theorem.
Received: 10.10.2016
Revised: 16.01.2017
English version:
Mathematical Notes, 2017, Volume 102, Issue 3, Pages 325–337
DOI: https://doi.org/10.1134/S0001434617090036
Bibliographic databases:
Document Type: Article
UDC: 517.5+519.213
Language: Russian
Citation: V. P. Zastavnyi, A. D. Manov, “On the Positive Definiteness of Some Functions Related to the Schoenberg Problem”, Mat. Zametki, 102:3 (2017), 355–368; Math. Notes, 102:3 (2017), 325–337
Citation in format AMSBIB
\Bibitem{ZasMan17}
\by V.~P.~Zastavnyi, A.~D.~Manov
\paper On the Positive Definiteness of Some Functions Related to the Schoenberg Problem
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 3
\pages 355--368
\mathnet{http://mi.mathnet.ru/mzm11412}
\crossref{https://doi.org/10.4213/mzm11412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3691701}
\elib{https://elibrary.ru/item.asp?id=29864973}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 3
\pages 325--337
\crossref{https://doi.org/10.1134/S0001434617090036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413455100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032005903}
Linking options:
  • https://www.mathnet.ru/eng/mzm11412
  • https://doi.org/10.4213/mzm11412
  • https://www.mathnet.ru/eng/mzm/v102/i3/p355
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :89
    References:54
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024