|
This article is cited in 4 scientific papers (total in 4 papers)
On the Positive Definiteness of Some Functions Related to the Schoenberg Problem
V. P. Zastavnyi, A. D. Manov Donetsk National University
Abstract:
For a broad class of functions $f\colon[0,+\infty)\to\mathbb{R}$, we prove that the function $f(\rho^{\lambda}(x))$ is positive definite on a nontrivial real linear space $E$ if and only if $0\le\lambda\le \alpha(E,\rho)$. Here $\rho$ is a nonnegative homogeneous function on $E$ such that $\rho(x)\not\equiv 0$ and $\alpha(E,\rho)$ is the Schoenberg constant.
Keywords:
positive definite function, completely monotone function, Schoenberg problem, Kuttner–Golubov problem, Fourier transform, Bochner theorem.
Received: 10.10.2016 Revised: 16.01.2017
Citation:
V. P. Zastavnyi, A. D. Manov, “On the Positive Definiteness of Some Functions Related to the Schoenberg Problem”, Mat. Zametki, 102:3 (2017), 355–368; Math. Notes, 102:3 (2017), 325–337
Linking options:
https://www.mathnet.ru/eng/mzm11412https://doi.org/10.4213/mzm11412 https://www.mathnet.ru/eng/mzm/v102/i3/p355
|
Statistics & downloads: |
Abstract page: | 557 | Full-text PDF : | 89 | References: | 54 | First page: | 30 |
|