Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 6, Pages 881–886
DOI: https://doi.org/10.4213/mzm11409
(Mi mzm11409)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Number of Integer Points Whose First Coordinates Satisfy a Divisibility Condition on Hyperboloids of a Special Form

U. M. Pachev, R. A. Dokhov

Kabardino-Balkar State University, Nal'chik
Full-text PDF (395 kB) Citations (1)
References:
Abstract: The discrete ergodic method is applied to obtain an asymptotic expression for the number of all integer points in a given bounded domain on a three-dimensional hyperboloid of genus determined by the invariants $[w,2]$, where $w$ is odd, such that the first coordinates of these points are divisible by $w$.
Keywords: discrete ergodic method, ternary quadratic form, number of classes of binary quadratic forms, integer point on a hyperboloid, asymptotic relation.
Received: 18.02.2016
English version:
Mathematical Notes, 2016, Volume 100, Issue 6, Pages 847–851
DOI: https://doi.org/10.1134/S0001434616110249
Bibliographic databases:
Document Type: Article
UDC: 511.512
Language: Russian
Citation: U. M. Pachev, R. A. Dokhov, “On the Number of Integer Points Whose First Coordinates Satisfy a Divisibility Condition on Hyperboloids of a Special Form”, Mat. Zametki, 100:6 (2016), 881–886; Math. Notes, 100:6 (2016), 847–851
Citation in format AMSBIB
\Bibitem{PacDok16}
\by U.~M.~Pachev, R.~A.~Dokhov
\paper On the Number of Integer Points Whose First Coordinates Satisfy a Divisibility Condition on Hyperboloids of a Special Form
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 6
\pages 881--886
\mathnet{http://mi.mathnet.ru/mzm11409}
\crossref{https://doi.org/10.4213/mzm11409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588912}
\elib{https://elibrary.ru/item.asp?id=27484945}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 6
\pages 847--851
\crossref{https://doi.org/10.1134/S0001434616110249}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391490500024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007040085}
Linking options:
  • https://www.mathnet.ru/eng/mzm11409
  • https://doi.org/10.4213/mzm11409
  • https://www.mathnet.ru/eng/mzm/v100/i6/p881
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :40
    References:51
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024