Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 5, Pages 710–731
DOI: https://doi.org/10.4213/mzm11353
(Mi mzm11353)
 

This article is cited in 14 scientific papers (total in 14 papers)

Characteristics with Singularities and the Boundary Values of the Asymptotic Solution of the Cauchy Problem for a Degenerate Wave Equation

S. Yu. Dobrokhotovab, V. E. Nazaikinskiiab

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
References:
Abstract: We consider the Cauchy problem with spatially localized initial data for the two-dimensional wave equation degenerating on the boundary of the domain. This problem arises, in particular, in the theory of tsunami wave run-up on a shallow beach. Earlier, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and B. Tirozzi developed a method for constructing asymptotic solutions of this problem. The method is based on a modified Maslov canonical operator and on characteristics (trajectories) unbounded in the momentum variables; such characteristics are nonstandard from the viewpoint of the theory of partial differential equations. In a neighborhood of the velocity degeneration line, which is a caustic of a special form, the canonical operator is defined via the Hankel transform, which arises when applying Fock's quantization procedure to the canonical transformation regularizing the above-mentioned nonstandard characteristics in a neighborhood of the velocity degeneration line (the boundary of the domain). It is shown in the present paper that the restriction of the asymptotic solutions to the boundary is determined by the standard canonical operator, which simplifies the asymptotic formulas for the solution on the boundary dramatically; for initial perturbations of special form, the solutions can be expressed via simple algebraic functions.
Keywords: wave equation, nonstandard characteristics, run-up on a shallow beach, localized source, asymptotics, restriction to the boundary.
Funding agency Grant number
Russian Science Foundation 16-11-10282
This work was supported by the Russian Science Foundation under grant 16-11-10282.
Received: 01.06.2016
English version:
Mathematical Notes, 2016, Volume 100, Issue 5, Pages 695–713
DOI: https://doi.org/10.1134/S0001434616110067
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Characteristics with Singularities and the Boundary Values of the Asymptotic Solution of the Cauchy Problem for a Degenerate Wave Equation”, Mat. Zametki, 100:5 (2016), 710–731; Math. Notes, 100:5 (2016), 695–713
Citation in format AMSBIB
\Bibitem{DobNaz16}
\by S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii
\paper Characteristics with Singularities and the~Boundary Values of~the~Asymptotic Solution of~the~Cauchy Problem for~a~Degenerate Wave Equation
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 5
\pages 710--731
\mathnet{http://mi.mathnet.ru/mzm11353}
\crossref{https://doi.org/10.4213/mzm11353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588894}
\elib{https://elibrary.ru/item.asp?id=27349903}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 5
\pages 695--713
\crossref{https://doi.org/10.1134/S0001434616110067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391490500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007040147}
Linking options:
  • https://www.mathnet.ru/eng/mzm11353
  • https://doi.org/10.4213/mzm11353
  • https://www.mathnet.ru/eng/mzm/v100/i5/p710
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:549
    Full-text PDF :83
    References:72
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024