Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 1, Pages 20–26
DOI: https://doi.org/10.4213/mzm11311
(Mi mzm11311)
 

This article is cited in 5 scientific papers (total in 5 papers)

Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter

S. N. Askhabovab

a Chechen State University, Groznyi
b Chechen State Pedagogical Institute
Full-text PDF (410 kB) Citations (5)
References:
Abstract: The maximally monotone operator method in real weighted Lebesgue spaces is used to study three different classes of nonlinear singular integro-differential equations with an arbitrary positive parameter. Under sufficiently clear on the nonlinearity, we prove existence and uniqueness theorems for the solution covering in particular, the linear case as well. In contrast to the previous papers in which other classes of nonlinear singular integral and integro-differential equations were studied, our study is based on the inversion of the superposition operator generating the nonlinearities of the equations under consideration and the establishment of the coercitivity of the inverse operator, as well as a generalization of the well-known Schleiff inequality.
Keywords: maximally monotone operator, nonlinear singular integro-differential equations.
Received: 14.07.2016
English version:
Mathematical Notes, 2018, Volume 103, Issue 1, Pages 18–23
DOI: https://doi.org/10.1134/S0001434618010029
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: S. N. Askhabov, “Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter”, Mat. Zametki, 103:1 (2018), 20–26; Math. Notes, 103:1 (2018), 18–23
Citation in format AMSBIB
\Bibitem{Ask18}
\by S.~N.~Askhabov
\paper Nonlinear Singular Integro-Differential Equations with an Arbitrary Parameter
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 1
\pages 20--26
\mathnet{http://mi.mathnet.ru/mzm11311}
\crossref{https://doi.org/10.4213/mzm11311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3740282}
\elib{https://elibrary.ru/item.asp?id=30762103}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 1
\pages 18--23
\crossref{https://doi.org/10.1134/S0001434618010029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427616800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043775311}
Linking options:
  • https://www.mathnet.ru/eng/mzm11311
  • https://doi.org/10.4213/mzm11311
  • https://www.mathnet.ru/eng/mzm/v103/i1/p20
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024