Abstract:
This paper studies the optimality in the problem of cyclic harvesting of a resource distributed on a circle with a certain prescribed density. The velocity of motion of the collecting device and the fraction of the resource harvested at a given time play the role of control. The problem is to choose a control maximizing a given quality functional. The paper presents the maximum principle for this (infinite-dimensional) problem. The maximum principle can be written as two inequalities which can be conveniently verified. The class of problems with a concave profit function is solved completely. At the end of the paper, several examples are considered to illustrate the developed technique.
Keywords:
cyclic harvesting of a resource, maximum principle, spatially distributed resource, necessary conditions for optimality.
Citation:
M. I. Zelikin, L. V. Lokoutsievskiy, S. V. Skopintcev, “On Optimal Harvesting of a Resource on a Circle”, Mat. Zametki, 102:4 (2017), 565–578; Math. Notes, 102:4 (2017), 521–532
\Bibitem{ZelLokSko17}
\by M.~I.~Zelikin, L.~V.~Lokoutsievskiy, S.~V.~Skopintcev
\paper On Optimal Harvesting of a Resource on a Circle
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 4
\pages 565--578
\mathnet{http://mi.mathnet.ru/mzm11310}
\crossref{https://doi.org/10.4213/mzm11310}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3706873}
\elib{https://elibrary.ru/item.asp?id=30512293}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 4
\pages 521--532
\crossref{https://doi.org/10.1134/S0001434617090243}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413455100024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032036251}
Linking options:
https://www.mathnet.ru/eng/mzm11310
https://doi.org/10.4213/mzm11310
https://www.mathnet.ru/eng/mzm/v102/i4/p565
This publication is cited in the following 8 articles:
L. I. Rodina, A. V. Chernikova, “Ob optimalnoi dobyche vozobnovlyaemogo resursa na beskonechnom promezhutke vremeni”, Tr. IMM UrO RAN, 29, no. 1, 2023, 167–179
Dmitry Gromov, Tadashi Shigoka, Anton Bondarev, “Optimality and sustainability of hybrid limit cycles in the pollution control problem with regime shifts”, Environ Dev Sustain, 26:4 (2023), 10701
Yilun Wu, Anna Tur, Hongbo Wang, “Sustainable Optimal Control for Switched Pollution-Control Problem with Random Duration”, Entropy, 25:10 (2023), 1426
A. Davydov, E. Vinnikov, “Optimal cyclic dynamic of distributed population under permanent and impulse harvesting”, Dynamic Control and Optimization, Springer Proceedings in Mathematics & Statistics, 407, 2022, 101
A. V. Egorova, “Optimizatsiya diskontirovannogo dokhoda dlya strukturirovannoi populyatsii, podverzhennoi promyslu”, Vestnik rossiiskikh universitetov. Matematika, 26:133 (2021), 15–25
S. Anita, S. Behringer, A.-M. Mosneagu, T. Upmann, “Optimal harvesting of a spatially distributed renewable resource with endogenous pricing”, Math. Model. Nat. Phenom., 14:1 (2019), UNSP 101
A. V. Egorova, L. I. Rodina, “Ob optimalnoi dobyche vozobnovlyaemogo resursa iz strukturirovannoi populyatsii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 501–517