Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 1, Pages 85–90
DOI: https://doi.org/10.4213/mzm11281
(Mi mzm11281)
 

This article is cited in 15 scientific papers (total in 15 papers)

The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric

Yu. V. Malykhina, K. S. Ryutinb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
References:
Abstract: We prove that the Cartesian product of octahedra $B_{1,\infty}^{n,m}=B_1^n\times \dots\times B_1^n$ ($m$ factors) is poorly approximated by spaces of half dimension in the mixed norm: $d_{N/2}(B_{1,\infty}^{n,m},\ell_{2,1}^{n,m})\ge cm$, $N=mn$. As a corollary, we find the order of linear widths of the Hölder–Nikolskii classes $H^r_p(\mathbb T^d)$ in the metric of $L_q$ in certain domains of variation of the parameters $(p,q)$.
Keywords: Kolmogorov width, vector balancing.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00332
This work was supported by the Russian Foundation for Basic Research under grant 14-01-00332.
Received: 09.06.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 1, Pages 94–99
DOI: https://doi.org/10.1134/S0001434617010096
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: Yu. V. Malykhin, K. S. Ryutin, “The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric”, Mat. Zametki, 101:1 (2017), 85–90; Math. Notes, 101:1 (2017), 94–99
Citation in format AMSBIB
\Bibitem{MalRyu17}
\by Yu.~V.~Malykhin, K.~S.~Ryutin
\paper The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 1
\pages 85--90
\mathnet{http://mi.mathnet.ru/mzm11281}
\crossref{https://doi.org/10.4213/mzm11281}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598753}
\elib{https://elibrary.ru/item.asp?id=28172127}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 1
\pages 94--99
\crossref{https://doi.org/10.1134/S0001434617010096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396392700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015674750}
Linking options:
  • https://www.mathnet.ru/eng/mzm11281
  • https://doi.org/10.4213/mzm11281
  • https://www.mathnet.ru/eng/mzm/v101/i1/p85
  • Related presentations:
    This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:733
    Full-text PDF :95
    References:54
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024