|
Matematicheskie Zametki, 2019, Volume 105, Issue 4, paper published in the English version journal
(Mi mzm11273)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Papers published in the English version of the journal
Proximinality in Banach space valued grand Bochner-Lebesgue spaces with variable exponent
Haihua Wei, Jingshi Xu School of Mathematics and Statistics, Hainan Normal University,
Haikou, 571158 China
Abstract:
Let $(A,\mathscr{A},\mu)$ be a $\sigma$-finite complete measure space and $p(\cdot)$ be a $\mu$-measurable function on $A$ which takes values in $(1,\infty).$ Let $Y$ be a subspace of a Banach space $X.$ Denote $\widetilde{L}^{p(\cdot),\varphi}(A, Y)$ and $\widetilde{L}^{p(\cdot),\varphi}(A, X)$ by grand Bochner-Lebesgue spaces with variable exponent $p(\cdot)$ whose functions take values in $Y$ and $X$ respectively. Firstly, we estimate the distance of $f$ from $\widetilde{L}^{p(\cdot),\varphi}(A, Y)$ when $f\in \widetilde{L}^{p(\cdot),\varphi}(A, X).$ Then we obtain that $\widetilde{L}^{p(\cdot),\varphi}(A, Y)$ is proximinal in $\widetilde{L}^{p(\cdot),\varphi}(A, X)$ if $Y$ is weakly $\mathcal{K}$-analytic and proximinal in $X.$ Finally, we establish the connection between the proximinality of $\widetilde{L}^{p(\cdot),\varphi}(A, Y)$
in $\widetilde{L}^{p(\cdot),\varphi}(A, X)$ and the proximinality of $L^1(A, Y)$ in $L^1(A, X).$
Keywords:
Proximinality; Grand Bochner-Lebesgue spaces; variable exponent; Best approximation; weakly $\mathcal{K}$-analytic.
Received: 25.04.2016 Revised: 25.04.2016
Citation:
Haihua Wei, Jingshi Xu, “Proximinality in Banach space valued grand Bochner-Lebesgue spaces with variable exponent”, Math. Notes, 105:4 (2019), 618–624
Linking options:
https://www.mathnet.ru/eng/mzm11273
|
|