Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 5, paper published in the English version journal (Mi mzm11266)  

This article is cited in 36 scientific papers (total in 36 papers)

Papers published in the English version of the journal

Weighted Inequalities for a General Commutator Associated to a Singular Integral Operator Satisfying a Variant of Hörmander's Condition

H. Haijun, L. Lanzhe

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, China
Citations (36)
Abstract: In this paper, weighted inequalities for a certain general commutator associated to a singular integral operator satisfying a variant of Hörmander's condition on Lebesgue spaces are obtained. To do this, some weighted sharp maximal function inequalities for the commutator are proved.
Keywords: commutator, singular integral operator, sharp maximal function, weighted BMO, weighted Lipschitz function.
Funding agency Grant number
Hunan Provincial Natural Science Foundation of China 2015JJ3013
Hunan Provincial Natural Science Foundation of China 2016JJ1001
The work of Hajun Hu was supported in part by Hunan Provincial Natural Science Foundation of China under grants no. 2015JJ3013 and no. 2016JJ1001.
Received: 11.05.2016
Revised: 01.12.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 5, Pages 830–840
DOI: https://doi.org/10.1134/S0001434617050091
Bibliographic databases:
Document Type: Article
PACS: 42B25
Language: English
Citation: H. Haijun, L. Lanzhe, “Weighted Inequalities for a General Commutator Associated to a Singular Integral Operator Satisfying a Variant of Hörmander's Condition”, Math. Notes, 101:5 (2017), 830–840
Citation in format AMSBIB
\Bibitem{HaiLan17}
\by H.~Haijun, L.~Lanzhe
\paper Weighted Inequalities for a General Commutator
Associated to a Singular Integral Operator
Satisfying a Variant of H\"ormander's Condition
\jour Math. Notes
\yr 2017
\vol 101
\issue 5
\pages 830--840
\mathnet{http://mi.mathnet.ru/mzm11266}
\crossref{https://doi.org/10.1134/S0001434617050091}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3669607}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404236900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021274210}
Linking options:
  • https://www.mathnet.ru/eng/mzm11266
  • This publication is cited in the following 36 articles:
    1. Xiuyun Xia, Huatao Chen, Hao Tian, Ye Wang, Yadan Shi, “Sharp and Weighted Boundedness for Multilinear Integral Operators”, Tatra Mountains Mathematical Publications, 86:1 (2024), 185  crossref
    2. G. Yang, Q. Cao, “Stability for patch structure Nicholson's blowflies systems involving distinctive maturation and feedback delays”, J. Exp. Theor. Artif. Intell., 34:1 (2022), 81–93  crossref  isi
    3. Cao Q., Wang G., “Dynamic Analysis on a Delayed Nonlinear Density-Dependent Mortality Nicholson'S Blowflies Model”, Int. J. Control, 94:9 (2021), 2596–2602  crossref  mathscinet  isi
    4. Yao L., “Global Exponential Stability on Anti-Periodic Solutions in Proportional Delayed Hihnns”, J. Exp. Theor. Artif. Intell., 33:1 (2021), 47–61  crossref  isi  scopus
    5. Qian Ch., “New Periodic Stability For a Class of Nicholson'S Blowflies Models With Multiple Different Delays”, Int. J. Control, 94:12 (2021), 3433–3438  crossref  mathscinet  isi  scopus
    6. A. A. El-Deeb, I. Hwang, Ch. Park, O. Bazighifan, “Some new dynamic steffensen-type inequalities on a general time scale measure space”, AIMS Math., 7:3 (2021), 4326–4337  crossref  mathscinet  isi
    7. W.-M. Qian, H.-Z. Xu, Z.-Y. He, Yu.-M. Chu, “Bounding the Sandor-Yang means for the combinations of contraharmonic and arithmetic means”, J. Math. Inequal., 15:2 (2021), 655–666  crossref  mathscinet  isi
    8. H. Kalsoom, M. Idrees, D. Baleanu, Yu.-M. Chu, “New estimates of q(1)q(2)-ostrowski-type inequalities within a class of n-polynomial prevexity of functions”, J. Funct. space, 2020 (2020), 3720798  crossref  mathscinet  isi
    9. J.-M. Shen, Zh.-H. Yang, W.-M. Qian, W. Zhang, Yu.-M. Chu, “Sharp rational bounds for the gamma function”, Math. Inequal. Appl., 23:3 (2020), 843–853  crossref  mathscinet  isi  scopus
    10. X. Long, “Novel stability criteria on a patch structure nicholson's blowflies model with multiple pairs of time-varying delays”, AIMS Math., 5:6 (2020), 7387–7401  crossref  mathscinet  isi
    11. I. A. Baloch, Yu.-M. Chu, “Petrovic-type inequalities for harmonic h-convex functions”, J. Funct. space, 2020 (2020), 3075390  crossref  mathscinet  isi  scopus
    12. Q. Cao, G. Wang, Ch. Qian, “New results on global exponential stability for a periodic nicholson's blowflies model involving time-varying delays”, Adv. Differ. Equ., 2020:1 (2020)  crossref  mathscinet  isi  scopus
    13. S. Rafeeq, H. Kalsoom, S. Hussain, S. Rashid, Yu.-M. Chu, “Delay dynamic double integral inequalities on time scales with applications”, Adv. Differ. Equ., 2020:1 (2020)  crossref  mathscinet  isi
    14. Ch. Qian, Yu. Hu, “Novel stability criteria on nonlinear density-dependent mortality nicholson's blowflies systems in asymptotically almost periodic environments”, J. Inequal. Appl., 2020:1 (2020), 13  crossref  mathscinet  isi  scopus
    15. W.-M. Qian, Z.-Y. He, Yu.-M. Chu, “Approximation for the complete elliptic integral of the first kind”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 114:2 (2020)  crossref  mathscinet  isi
    16. B. Wang, Ch.-L. Luo, Sh.-H. Li, Yu.-M. Chu, “Sharp one-parameter geometric and quadratic means bounds for the sandor-yang means”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 114:1 (2020), 7  crossref  mathscinet  isi
    17. Ya. Xu, Q. Cao, “Global asymptotic stability for a nonlinear density-dependent mortality nicholson's blowflies system involving multiple pairs of time-varying delays”, Adv. Differ. Equ., 2020:1 (2020), 123  crossref  mathscinet  isi
    18. M.-K. Wang, M.-Y. Hong, Ya.-F. Xu, Zh.-H. Shen, Yu.-M. Chu, “Inequalities for generalized trigonometric and hyperbolic functions with one parameter”, J. Math. Inequal., 14:1 (2020), 1–21  crossref  mathscinet  isi
    19. S. Rashid, F. Jarad, M. A. Noor, “Gruss-type integrals inequalities via generalized proportional fractional operators”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 114:2 (2020), 93  crossref  mathscinet  isi
    20. S. Rashid, F. Jarad, H. Kalsom, Yu.-M. Chu, “On polya-szego and cebysev type inequalities via generalized k-fractional integrals”, Adv. Differ. Equ., 2020:1 (2020), 125  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:139
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025