|
This article is cited in 3 scientific papers (total in 3 papers)
Quasiuniversal Fourier–Walsh Series for the Classes $L^p[0,1]$, $p>1$
A. A. Sargsyan Russian-Armenian (Slavonic) State University, Yerevan
Abstract:
It is proved that, for each number $p>1$, there exists a function $L^1[0,1]$ whose Fourier–Walsh series is quasiuniversal with respect to subseries-signs in the class $L^p[0,1]$ in the sense of $L^p$-convergence.
Keywords:
universal series, Fourier coefficients, Walsh system, $L^p$-convergence.
Received: 21.03.2016 Revised: 17.08.2017
Citation:
A. A. Sargsyan, “Quasiuniversal Fourier–Walsh Series for the Classes $L^p[0,1]$, $p>1$”, Mat. Zametki, 104:2 (2018), 273–288; Math. Notes, 104:2 (2018), 278–292
Linking options:
https://www.mathnet.ru/eng/mzm11236https://doi.org/10.4213/mzm11236 https://www.mathnet.ru/eng/mzm/v104/i2/p273
|
Statistics & downloads: |
Abstract page: | 281 | Full-text PDF : | 31 | References: | 39 | First page: | 13 |
|