Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 2, Pages 273–288
DOI: https://doi.org/10.4213/mzm11236
(Mi mzm11236)
 

This article is cited in 3 scientific papers (total in 3 papers)

Quasiuniversal Fourier–Walsh Series for the Classes $L^p[0,1]$, $p>1$

A. A. Sargsyan

Russian-Armenian (Slavonic) State University, Yerevan
Full-text PDF (547 kB) Citations (3)
References:
Abstract: It is proved that, for each number $p>1$, there exists a function $L^1[0,1]$ whose Fourier–Walsh series is quasiuniversal with respect to subseries-signs in the class $L^p[0,1]$ in the sense of $L^p$-convergence.
Keywords: universal series, Fourier coefficients, Walsh system, $L^p$-convergence.
Received: 21.03.2016
Revised: 17.08.2017
English version:
Mathematical Notes, 2018, Volume 104, Issue 2, Pages 278–292
DOI: https://doi.org/10.1134/S0001434618070295
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: A. A. Sargsyan, “Quasiuniversal Fourier–Walsh Series for the Classes $L^p[0,1]$, $p>1$”, Mat. Zametki, 104:2 (2018), 273–288; Math. Notes, 104:2 (2018), 278–292
Citation in format AMSBIB
\Bibitem{Sar18}
\by A.~A.~Sargsyan
\paper Quasiuniversal Fourier--Walsh Series for the Classes~$L^p[0,1]$, $p>1$
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 2
\pages 273--288
\mathnet{http://mi.mathnet.ru/mzm11236}
\crossref{https://doi.org/10.4213/mzm11236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833502}
\elib{https://elibrary.ru/item.asp?id=35410188}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 2
\pages 278--292
\crossref{https://doi.org/10.1134/S0001434618070295}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000446511500029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054553344}
Linking options:
  • https://www.mathnet.ru/eng/mzm11236
  • https://doi.org/10.4213/mzm11236
  • https://www.mathnet.ru/eng/mzm/v104/i2/p273
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :31
    References:39
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024