Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 5, paper published in the English version journal
DOI: https://doi.org/10.1134/S0001434614110169
(Mi mzm11209)
 

This article is cited in 48 scientific papers (total in 48 papers)

Papers published in the English version of the journal

The Dirac Operator with Complex-Valued Summable Potential

A. M. Savchuk, A. A. Shkalikov

Moscow State University, Moscow, Russia
Citations (48)
Abstract: The paper deals with the Dirac operator generated on the finite interval $[0, \pi]$ by the differential expression $-B\mathbf{y}'+Q(x)\mathbf{y}$, where
$$ B =\begin{pmatrix}0&1\\-1&0\end{pmatrix},\qquad Q(x)=\begin{pmatrix}q_1(x)&q_2(x)\\q_3(x)&q_4(x)\end{pmatrix}, $$
and the entries $q_j(x)$ belong to $L_p[0,\pi]$ for some $p\geqslant 1$. The classes of regular and strongly regular operators of this form are defined, depending on the boundary conditions. The asymptotic formulas for the eigenvalues and eigenfunctions of such operators are obtained with remainders depending on $p$. It it is proved that the system of eigen and associated functions of a regular operator forms a Riesz basis with parentheses in the space $(L_2[0,\pi])^2$ and the usual Riesz basis, provided that the operator is strongly regular.
Keywords: Dirac operator, regular boundary conditions, asymptotic formulas for eigenvalues and eigenfunctions, Riesz basis.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12476_ofi_m2
Russian Science Foundation 14-11-00754
The work of the first author was supported by the Russian Foundation for Basic Research (grant no. 13-01-12476_ofi_m2) and that of the second author by the Russian Science Foundation (grant no. 14-11-00754).
Received: 10.10.2014
English version:
Mathematical Notes, 2014, Volume 96, Issue 5, Pages 777–810
DOI: https://doi.org/10.1134/S0001434614110169
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. M. Savchuk, A. A. Shkalikov, “The Dirac Operator with Complex-Valued Summable Potential”, Math. Notes, 96:5 (2014), 777–810
Citation in format AMSBIB
\Bibitem{SavShk14}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper The Dirac Operator with Complex-Valued Summable Potential
\jour Math. Notes
\yr 2014
\vol 96
\issue 5
\pages 777--810
\mathnet{http://mi.mathnet.ru/mzm11209}
\crossref{https://doi.org/10.1134/S0001434614110169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343640}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919928354}
Linking options:
  • https://www.mathnet.ru/eng/mzm11209
  • https://doi.org/10.1134/S0001434614110169
  • This publication is cited in the following 48 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:302
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024