Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 5, paper published in the English version journal
DOI: https://doi.org/10.1134/S0001434614110169
(Mi mzm11209)
 

This article is cited in 51 scientific papers (total in 51 papers)

Papers published in the English version of the journal

The Dirac Operator with Complex-Valued Summable Potential

A. M. Savchuk, A. A. Shkalikov

Moscow State University, Moscow, Russia
Citations (51)
Abstract: The paper deals with the Dirac operator generated on the finite interval [0,π] by the differential expression By+Q(x)y, where
B=(0110),Q(x)=(q1(x)q2(x)q3(x)q4(x)),
and the entries qj(x) belong to Lp[0,π] for some p1. The classes of regular and strongly regular operators of this form are defined, depending on the boundary conditions. The asymptotic formulas for the eigenvalues and eigenfunctions of such operators are obtained with remainders depending on p. It it is proved that the system of eigen and associated functions of a regular operator forms a Riesz basis with parentheses in the space (L2[0,π])2 and the usual Riesz basis, provided that the operator is strongly regular.
Keywords: Dirac operator, regular boundary conditions, asymptotic formulas for eigenvalues and eigenfunctions, Riesz basis.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12476_ofi_m2
Russian Science Foundation 14-11-00754
The work of the first author was supported by the Russian Foundation for Basic Research (grant no. 13-01-12476_ofi_m2) and that of the second author by the Russian Science Foundation (grant no. 14-11-00754).
Received: 10.10.2014
English version:
Mathematical Notes, 2014, Volume 96, Issue 5, Pages 777–810
DOI: https://doi.org/10.1134/S0001434614110169
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. M. Savchuk, A. A. Shkalikov, “The Dirac Operator with Complex-Valued Summable Potential”, Math. Notes, 96:5 (2014), 777–810
Citation in format AMSBIB
\Bibitem{SavShk14}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper The Dirac Operator with Complex-Valued Summable Potential
\jour Math. Notes
\yr 2014
\vol 96
\issue 5
\pages 777--810
\mathnet{http://mi.mathnet.ru/mzm11209}
\crossref{https://doi.org/10.1134/S0001434614110169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343640}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919928354}
Linking options:
  • https://www.mathnet.ru/eng/mzm11209
  • https://doi.org/10.1134/S0001434614110169
  • This publication is cited in the following 51 articles:
    1. Anton A. Lunyov, Mark M. Malamud, “On the completeness property of root vector systems for 2 × 2 Dirac type operators with non-regular boundary conditions”, Journal of Mathematical Analysis and Applications, 543:2 (2025), 128949  crossref
    2. Alexander Makin, “On the completeness of root function system of the Dirac operator with two‐point boundary conditions”, Mathematische Nachrichten, 2024  crossref
    3. A. S. Makin, “On the Spectrum of Nonself-Adjoint Dirac Operators with Two-Point Boundary Conditions”, Diff Equat, 60:2 (2024), 152  crossref
    4. A. P. Kosarev, A. A. Shkalikov, “Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter”, Math. Notes, 116:2 (2024), 283–302  mathnet  crossref  crossref
    5. A. S. Makin, “On the spectrum of non-selfadjoint Dirac operators with two-point boundary conditions”, Differencialʹnye uravneniâ, 60:2 (2024)  crossref
    6. A. Lunev, M. Malamud, “On the Asymptotic Expansion of the Characteristic Determinant for a 2 × 2 Dirac Type System”, J Math Sci, 2024  crossref
    7. E. Dzh. Ibadov, “O neravenstve Rissa i bazisnosti sistem kornevykh vektor-funktsii operatora tipa Diraka $2m$-go poryadka s summiruemym koeffitsientom”, Izv. vuzov. Matem., 2024, no. 11, 23–34  mathnet  crossref
    8. A. M. Savchuk, I. V. Sadovnichaya, “The Operator Group Generated by the One-dimensional Dirac System”, Lobachevskii J Math, 45:9 (2024), 4582  crossref
    9. E. J. Ibadov, “On the Riesz Inequality and the Basicity of Systems of Root Vector Functions of 2mth-Order Dirac-Type Operator with Summable Coefficient”, Russ Math., 68:11 (2024), 18  crossref
    10. A. P. Kosarev, A. A. Shkalikov, “Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations”, Math. Notes, 114:4 (2023), 472–488  mathnet  crossref  crossref  mathscinet
    11. A. A. Lunev, M. M. Malamud, “Ob asimptoticheskom razlozhenii kharakteristicheskogo opredelitelya dlya $2 \times 2$-sistem tipa Diraka”, Issledovaniya po lineinym operatoram i teorii funktsii. 51, Zap. nauchn. sem. POMI, 527, POMI, SPb., 2023, 94–136  mathnet
    12. A. M. Savchuk, I. V. Sadovnichaya, “Operator group generated by a one-dimensional Dirac system”, Dokl. Math., 108:3 (2023), 490–492  mathnet  crossref  crossref  elib
    13. E. Dzh. Ibadov, “On the Properties of the Root Vector Function Systems of a th-Order Dirac Type Operator with an Integrable Potential”, Differentsialnye uravneniya, 59:10 (2023), 1299  crossref
    14. E. C. Ibadov, “On the Properties of the Root Vector Function Systems of a $2m $th-Order Dirac Type Operator with an Integrable Potential”, Diff Equat, 59:10 (2023), 1295  crossref
    15. Anton A. Lunyov, “Criterion of Bari basis property for 2 × 2 Dirac‐type operators with strictly regular boundary conditions”, Mathematische Nachrichten, 296:9 (2023), 4125  crossref
    16. Makin A., “On Convergence of Spectral Expansions of Dirac Operators With Regular Boundary Conditions”, Math. Nachr., 295:1 (2022), 189–210  crossref  mathscinet  isi
    17. Lunyov A.A., Malamud M.M., “Stability of Spectral Characteristics of Boundary Value Problems For 2 X 2 Dirac Type Systems. Applications to the Damped String”, J. Differ. Equ., 313 (2022), 633–742  crossref  mathscinet  isi
    18. A. Lunev, M. Malamud, “O kharakteristicheskikh opredelitelyakh granichnykh zadach dlya sistem tipa Diraka”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 69–120  mathnet
    19. M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76  mathnet  crossref  crossref  isi
    20. A. S. Makin, “O dvukhtochechnykh kraevykh zadachakh dlya operatorov Shturma—Liuvillya i Diraka”, Materialy Voronezhskoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 5, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 194, VINITI RAN, M., 2021, 144–154  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:349
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025