Abstract:
The paper deals with the Dirac operator generated on the finite interval [0,π] by the differential expression −By′+Q(x)y, where
B=(01−10),Q(x)=(q1(x)q2(x)q3(x)q4(x)),
and the entries qj(x) belong to Lp[0,π] for some p⩾1. The classes of regular and strongly regular operators of this form are defined, depending on the boundary conditions. The asymptotic formulas for the eigenvalues and eigenfunctions of such operators are obtained with remainders depending on p. It it is proved that the system of eigen and associated functions of a regular operator forms a Riesz basis with parentheses in the space (L2[0,π])2 and the usual Riesz basis, provided that the operator is strongly regular.
Keywords:
Dirac operator, regular boundary conditions, asymptotic formulas for eigenvalues and eigenfunctions, Riesz basis.
The work of the first author was supported by the Russian Foundation for Basic Research (grant no. 13-01-12476_ofi_m2)
and that of the second author by the Russian Science Foundation (grant no. 14-11-00754).
This publication is cited in the following 51 articles:
Anton A. Lunyov, Mark M. Malamud, “On the completeness property of root vector systems for 2 × 2 Dirac type operators with non-regular boundary conditions”, Journal of Mathematical Analysis and Applications, 543:2 (2025), 128949
Alexander Makin, “On the completeness of root function system of the Dirac operator with two‐point boundary conditions”, Mathematische Nachrichten, 2024
A. S. Makin, “On the Spectrum of Nonself-Adjoint Dirac Operators with
Two-Point Boundary Conditions”, Diff Equat, 60:2 (2024), 152
A. P. Kosarev, A. A. Shkalikov, “Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter”, Math. Notes, 116:2 (2024), 283–302
A. S. Makin, “On the spectrum of non-selfadjoint Dirac operators with two-point boundary conditions”, Differencialʹnye uravneniâ, 60:2 (2024)
A. Lunev, M. Malamud, “On the Asymptotic Expansion of the Characteristic Determinant for a 2 × 2 Dirac Type System”, J Math Sci, 2024
E. Dzh. Ibadov, “O neravenstve Rissa i bazisnosti sistem kornevykh vektor-funktsii operatora tipa Diraka $2m$-go poryadka s summiruemym koeffitsientom”, Izv. vuzov. Matem., 2024, no. 11, 23–34
A. M. Savchuk, I. V. Sadovnichaya, “The Operator Group Generated by the One-dimensional Dirac System”, Lobachevskii J Math, 45:9 (2024), 4582
E. J. Ibadov, “On the Riesz Inequality and the Basicity of Systems of Root Vector Functions of 2mth-Order Dirac-Type Operator with Summable Coefficient”, Russ Math., 68:11 (2024), 18
A. P. Kosarev, A. A. Shkalikov, “Asymptotics in the Spectral Parameter for Solutions of $2 \times 2$ Systems of Ordinary Differential Equations”, Math. Notes, 114:4 (2023), 472–488
A. A. Lunev, M. M. Malamud, “Ob asimptoticheskom razlozhenii kharakteristicheskogo opredelitelya dlya $2 \times 2$-sistem tipa Diraka”, Issledovaniya po lineinym operatoram i teorii funktsii. 51, Zap. nauchn. sem. POMI, 527, POMI, SPb., 2023, 94–136
A. M. Savchuk, I. V. Sadovnichaya, “Operator group generated by a one-dimensional Dirac system”, Dokl. Math., 108:3 (2023), 490–492
E. Dzh. Ibadov, “On the Properties of the Root Vector Function Systems of a th-Order Dirac Type Operator with an Integrable Potential”, Differentsialnye uravneniya, 59:10 (2023), 1299
E. C. Ibadov, “On the Properties of the Root Vector Function Systems of a $2m $th-Order Dirac Type Operator with an Integrable Potential”, Diff Equat, 59:10 (2023), 1295
Anton A. Lunyov, “Criterion of Bari basis property for 2 × 2 Dirac‐type operators with strictly regular boundary conditions”, Mathematische Nachrichten, 296:9 (2023), 4125
Makin A., “On Convergence of Spectral Expansions of Dirac Operators With Regular Boundary Conditions”, Math. Nachr., 295:1 (2022), 189–210
Lunyov A.A., Malamud M.M., “Stability of Spectral Characteristics of Boundary Value Problems For 2 X 2 Dirac Type Systems. Applications to the Damped String”, J. Differ. Equ., 313 (2022), 633–742
A. Lunev, M. Malamud, “O kharakteristicheskikh opredelitelyakh granichnykh zadach dlya sistem tipa Diraka”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 69–120
M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution $\nu(x)=1-x$ and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76
A. S. Makin, “O dvukhtochechnykh kraevykh zadachakh dlya operatorov Shturma—Liuvillya i Diraka”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 5, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 194, VINITI RAN, M., 2021, 144–154