Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 2, Pages 296–302
DOI: https://doi.org/10.4213/mzm11205
(Mi mzm11205)
 

This article is cited in 7 scientific papers (total in 7 papers)

Brief Communications

On the Analytic Continuation of the Lauricella Function FD(N)

S. I. Bezrodnykhabc

a Peoples Friendship University of Russia, Moscow
b Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute
c Dorodnitsyn Computing Centre of the Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
Full-text PDF (403 kB) Citations (7)
References:
Keywords: hypergeometric function of many variables, Lauricella function, analytic continuation, Christoffel–Schwarz integral.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00781
16-07-01195
This work was financially supported by the Ministry of Education and Science of the Russian Federation on the Program for Increasing the Competitiveness of Peoples' Friendship University among Leading Research and Educational Centers in 2016–2020, by the Russian Foundation for Basic Research under grants 16-01-00781 and 16-07-01195, and by the program of the Russian Academy of Sciences “Contemporary Problems of Theoretical Mathematics” (project “Optimal algorithms for the solution of problems of mathematical physics”).
Received: 25.02.2016
English version:
Mathematical Notes, 2016, Volume 100, Issue 2, Pages 318–324
DOI: https://doi.org/10.1134/S0001434616070282
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: S. I. Bezrodnykh, “On the Analytic Continuation of the Lauricella Function FD(N)”, Mat. Zametki, 100:2 (2016), 296–302; Math. Notes, 100:2 (2016), 318–324
Citation in format AMSBIB
\Bibitem{Bez16}
\by S.~I.~Bezrodnykh
\paper On the Analytic Continuation of the Lauricella Function~$F_D^{(N)}$
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 2
\pages 296--302
\mathnet{http://mi.mathnet.ru/mzm11205}
\crossref{https://doi.org/10.4213/mzm11205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588847}
\elib{https://elibrary.ru/item.asp?id=26414299}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 2
\pages 318--324
\crossref{https://doi.org/10.1134/S0001434616070282}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382193300028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983762717}
Linking options:
  • https://www.mathnet.ru/eng/mzm11205
  • https://doi.org/10.4213/mzm11205
  • https://www.mathnet.ru/eng/mzm/v100/i2/p296
  • This publication is cited in the following 7 articles:
    1. Bezrodnykh S.I., “Analytic Continuation of Lauricella'S Functions F-a((N)), F-B((N)) and F-D((N))”, Integral Transform. Spec. Funct., 31:11 (2020), 921–940  crossref  mathscinet  isi
    2. Bezrodnykh S.I., “Analytic Continuation of the Horn Hypergeometric Series With An Arbitrary Number of Variables”, Integral Transform. Spec. Funct., 31:10 (2020), 788–803  crossref  mathscinet  isi
    3. S. Bezrodnykh, A. Bogatyrev, S. Goreinov, O. Grigor'ev, H. Hakula, M. Vuorinen, “On capacity computation for symmetric polygonal condensers”, J. Comput. Appl. Math., 361 (2019), 271–282  crossref  mathscinet  isi
    4. J. Berge, R. Massey, Q. Baghi, P. Touboul, “Exponential shapelets: basis functions for data analysis of isolated features”, Mon. Not. Roy. Astron. Soc., 486:1 (2019), 544–559  crossref  isi
    5. S. I. Bezrodnykh, “Analytic continuation of the Lauricella function with arbitrary number of variables”, Integral Transforms Spec. Funct., 29:1 (2018), 21–42  crossref  mathscinet  zmath  isi  scopus
    6. S. I. Bezrodnykh, “The Lauricella hypergeometric function FD(N), the Riemann–Hilbert problem, and some applications”, Russian Math. Surveys, 73:6 (2018), 941–1031  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. S. I. Bezrodnykh, “Analytic continuation of the Appell function F1 and integration of the associated system of equations in the logarithmic case”, Comput. Math. Math. Phys., 57:4 (2017), 559–589  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:629
    Full-text PDF :113
    References:95
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025