Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 3, paper published in the English version journal (Mi mzm11191)  

This article is cited in 2 scientific papers (total in 2 papers)

Papers published in the English version of the journal

Geodesics inMinimal Surfaces

Carlos M. C. Riveros, Armando M. V. Corro

Universidade Federal de Goiás, Goiás, Brazil
Citations (2)
Abstract: In this paper, we consider connected minimal surfaces in $\mathbb{R}^3$ with isothermal coordinates and with a family of geodesic coordinates curves, these surfaces will be called GICM-surfaces. We give a classification of the GICM-surfaces. This class of minimal surfaces includes the catenoid, the helicoid and Enneper's surface. Also, we show that one family of this class of minimal surfaces has at least one closed geodesic and one $1$-periodic family of this class has finite total curvature. As application we show other characterization of catenoid and helicoid. Finally, we show that the class of GICM-surfaces coincides with the class of minimal surfaces whose the geodesic curvature $k_g^1$ and $k_g^2$ of the coordinates curves satisfy $\alpha k_g^1+\beta k_g^2=0$, $\alpha$, $\beta \in \mathbb{R}$.
Keywords: minimal surfaces, geodesic curvature, lines of curvature.
Received: 16.02.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 3, Pages 497–514
DOI: https://doi.org/10.1134/S0001434617030129
Bibliographic databases:
Document Type: Article
Language: English
Citation: Carlos M. C. Riveros, Armando M. V. Corro, “Geodesics inMinimal Surfaces”, Math. Notes, 101:3 (2017), 497–514
Citation in format AMSBIB
\Bibitem{RivCor17}
\by Carlos~M.~C.~Riveros, Armando~M.~V.~Corro
\paper Geodesics inMinimal Surfaces
\jour Math. Notes
\yr 2017
\vol 101
\issue 3
\pages 497--514
\mathnet{http://mi.mathnet.ru/mzm11191}
\crossref{https://doi.org/10.1134/S0001434617030129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401454600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018809310}
Linking options:
  • https://www.mathnet.ru/eng/mzm11191
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:176
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024