Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 6, Pages 887–896
DOI: https://doi.org/10.4213/mzm11163
(Mi mzm11163)
 

Estimate of the Ratio of Two Entire Functions whose Zeros Coincide in the Disk

V. L. Geynts, A. A. Shkalikov

Lomonosov Moscow State University
References:
Abstract: We study entire functions of finite growth order that admit the representation $\psi(z) = 1+ O(|z|^{-\mu})$, $\mu >0$, on a ray in the complex plane. We obtain the following result: if the zeros of two functions $\psi_1$, $\psi_2$ of such class coincide in the disk of radius $R$ centered at zero, then, for any arbitrarily small $\delta\in (0,1)$, $\varepsilon >0$, the ratio of these functions in the disk of radius $R^{1-\delta}$ admits the estimate $|\psi_1(z)/\psi_2(z) -1| \le \varepsilon R^{-\mu(1-\delta)}$ if $R\ge R_0(\varepsilon, \delta)$. The obtained results are important for stability analysis in the problem of the recovery of the potential in the Schrödinger equation on the semiaxis from the resonances of the operator.
Keywords: entire function of finite order, Hadamard theorem, Schrödinger operator, resonances of the Schrödinger operator, Jost function.
Funding agency Grant number
Russian Foundation for Basic Research 15-51-12389
This work was supported by the Russian Foundation for Basic Research under grant 15-51-12389.
Received: 19.01.2016
English version:
Mathematical Notes, 2016, Volume 99, Issue 6, Pages 870–878
DOI: https://doi.org/10.1134/S0001434616050254
Bibliographic databases:
Document Type: Article
UDC: 517.547.2
Language: Russian
Citation: V. L. Geynts, A. A. Shkalikov, “Estimate of the Ratio of Two Entire Functions whose Zeros Coincide in the Disk”, Mat. Zametki, 99:6 (2016), 887–896; Math. Notes, 99:6 (2016), 870–878
Citation in format AMSBIB
\Bibitem{GeyShk16}
\by V.~L.~Geynts, A.~A.~Shkalikov
\paper Estimate of the Ratio of Two Entire Functions whose Zeros Coincide in the Disk
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 6
\pages 887--896
\mathnet{http://mi.mathnet.ru/mzm11163}
\crossref{https://doi.org/10.4213/mzm11163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507453}
\elib{https://elibrary.ru/item.asp?id=26414312}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 6
\pages 870--878
\crossref{https://doi.org/10.1134/S0001434616050254}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977156660}
Linking options:
  • https://www.mathnet.ru/eng/mzm11163
  • https://doi.org/10.4213/mzm11163
  • https://www.mathnet.ru/eng/mzm/v99/i6/p887
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:431
    Full-text PDF :33
    References:50
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024