Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 4, Pages 483–502
DOI: https://doi.org/10.4213/mzm11155
(Mi mzm11155)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II. The Complex Plane

T. Yu. Baiguskarov, B. N. Khabibullin, A. V. Khasanova

Bashkir State University, Ufa
Full-text PDF (678 kB) Citations (4)
References:
Abstract: Let $u\not\equiv-\infty$ be a subharmonic function in the complex plane. We establish necessary and/or sufficient conditions for the existence of a nonzero entire function $f$ for which the modulus of the product of each of its $k$th derivative $k=0,1,\dots$, by any polynomial $p$ is not greater than the function $Ce^u$ in the entire complex plane, where $C$ is a constant depending on $k$ and $p$. The results obtained significantly strengthen and develop a number of results of Lars Hörmander (1997).
Keywords: entire function, subharmonic function, integral mean, Riesz measure, counting function.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00024
This work was supported by the Russian Foundation for Basic Research under grant 16-01-00024.
Received: 11.03.2016
Revised: 14.06.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 4, Pages 590–607
DOI: https://doi.org/10.1134/S000143461703018X
Bibliographic databases:
Document Type: Article
UDC: 517.53+517.574
Language: Russian
Citation: T. Yu. Baiguskarov, B. N. Khabibullin, A. V. Khasanova, “The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II. The Complex Plane”, Mat. Zametki, 101:4 (2017), 483–502; Math. Notes, 101:4 (2017), 590–607
Citation in format AMSBIB
\Bibitem{BaiKhaKha17}
\by T.~Yu.~Baiguskarov, B.~N.~Khabibullin, A.~V.~Khasanova
\paper The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function. II.~The Complex Plane
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 4
\pages 483--502
\mathnet{http://mi.mathnet.ru/mzm11155}
\crossref{https://doi.org/10.4213/mzm11155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629040}
\elib{https://elibrary.ru/item.asp?id=28931411}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 4
\pages 590--607
\crossref{https://doi.org/10.1134/S000143461703018X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401454600018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018841816}
Linking options:
  • https://www.mathnet.ru/eng/mzm11155
  • https://doi.org/10.4213/mzm11155
  • https://www.mathnet.ru/eng/mzm/v101/i4/p483
    Cycle of papers
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024