Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 1, Pages 118–132
DOI: https://doi.org/10.4213/mzm11133
(Mi mzm11133)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Radon–Kipriyanov Transform of the Generalized Spherical Mean of a Function

L. N. Lyakhov

Voronezh State University
Full-text PDF (570 kB) Citations (4)
References:
Abstract: A formula relating the Radon transform of functions of spherical symmetries to the Radon–Kipriyanov transform $K_\gamma$ for a natural multi-index $\gamma$ is given. For an arbitrary multi-index $\gamma$, formulas for the representation of the $K_\gamma$-transform of a radial function as fractional integrals of Erdelyi–Kober integral type and of Riemann–Liouville integral type are proved. The corresponding inversion formulas are obtained. These results are used to study the inversion of the Radon–Kipriyanov transform of the generalized (generated by a generalized shift) spherical mean values of functions that belong to a weighted Lebesgue space and are even with respect to each of the weight variables.
Keywords: Radon transform, Radon–Kipriyanov transform, radial function, multiaxial spherical symmetry, generalized spherical mean, fractional integral, fractional derivative.
Received: 01.12.2015
English version:
Mathematical Notes, 2016, Volume 100, Issue 1, Pages 100–112
DOI: https://doi.org/10.1134/S0001434616070099
Bibliographic databases:
Document Type: Article
UDC: 519.216
Language: Russian
Citation: L. N. Lyakhov, “The Radon–Kipriyanov Transform of the Generalized Spherical Mean of a Function”, Mat. Zametki, 100:1 (2016), 118–132; Math. Notes, 100:1 (2016), 100–112
Citation in format AMSBIB
\Bibitem{Lya16}
\by L.~N.~Lyakhov
\paper The Radon--Kipriyanov Transform of the Generalized Spherical Mean of a Function
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 1
\pages 118--132
\mathnet{http://mi.mathnet.ru/mzm11133}
\crossref{https://doi.org/10.4213/mzm11133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588832}
\elib{https://elibrary.ru/item.asp?id=26414282}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 1
\pages 100--112
\crossref{https://doi.org/10.1134/S0001434616070099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382193300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983788940}
Linking options:
  • https://www.mathnet.ru/eng/mzm11133
  • https://doi.org/10.4213/mzm11133
  • https://www.mathnet.ru/eng/mzm/v100/i1/p118
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :115
    References:55
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024