Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 1, Pages 109–117
DOI: https://doi.org/10.4213/mzm11127
(Mi mzm11127)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotics of the Fourier Sine Transform of a Function of Bounded Variation

E. R. Liflyand

Bar-Ilan University, Israel
Full-text PDF (463 kB) Citations (2)
References:
Abstract: For the asymptotic formula for the Fourier sine transform of a function of bounded variation, we find a new proof entirely within the framework of the theory of Hardy spaces, primarily with the use of the Hardy inequality. We show that, for a function of bounded variation whose derivative lies in the Hardy space, every aspect of the behavior of its Fourier transform can somehow be expressed in terms of the Hilbert transform of the derivative.
Keywords: function of bounded variation, Fourier transform, locally absolutely continuous function, Hilbert transform, Hardy space, Hardy inequality, M. Riesz theorem.
Received: 02.09.2015
English version:
Mathematical Notes, 2016, Volume 100, Issue 1, Pages 93–99
DOI: https://doi.org/10.1134/S0001434616070087
Bibliographic databases:
Document Type: Article
UDC: 517.518.5
Language: Russian
Citation: E. R. Liflyand, “Asymptotics of the Fourier Sine Transform of a Function of Bounded Variation”, Mat. Zametki, 100:1 (2016), 109–117; Math. Notes, 100:1 (2016), 93–99
Citation in format AMSBIB
\Bibitem{Lif16}
\by E.~R.~Liflyand
\paper Asymptotics of the Fourier Sine Transform of a~Function of Bounded Variation
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 1
\pages 109--117
\mathnet{http://mi.mathnet.ru/mzm11127}
\crossref{https://doi.org/10.4213/mzm11127}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588831}
\elib{https://elibrary.ru/item.asp?id=26414281}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 1
\pages 93--99
\crossref{https://doi.org/10.1134/S0001434616070087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382193300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983800167}
Linking options:
  • https://www.mathnet.ru/eng/mzm11127
  • https://doi.org/10.4213/mzm11127
  • https://www.mathnet.ru/eng/mzm/v100/i1/p109
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:415
    Full-text PDF :216
    References:56
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024