Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 1, Pages 163–179
DOI: https://doi.org/10.4213/mzm11124
(Mi mzm11124)
 

This article is cited in 14 scientific papers (total in 14 papers)

Almost Everywhere Summability of Fourier Series with Indication of the Set of Convergence

R. M. Trigub

Sumy State University
References:
Abstract: In this paper, the following problem is studied. For what multipliers $\{\lambda_{k,n}\}$ do the linear means of the Fourier series of functions $f\in L_1[-\pi,\pi]$,
$$ \sum_{k=-\infty}^\infty \lambda_{k,n}\widehat{f}_k e^{ikx}, \qquad \text{where $\widehat{f}_k$ is the $k$th Fourier coefficient}, $$
converge as $n\to \infty$ at all points at which the derivative of the function $\int_0^x f$ exists? In the case $\lambda_{k,n}=(1-|k|/(n+1))_+$, a criterion of the convergence of the $(C,1)$-means and, in the general case $\lambda_{k,n}=\phi(k/(n+1))$, a sufficient condition of the convergence at all such points (i.e., almost everywhere) are obtained. In the general case, the answer is given in terms of whether $\phi(x)$ and $x\phi'(x)$ belong to the Wiener algebra of absolutely convergent Fourier integrals. New examples are given.
Keywords: Fourier series, Lebesgue point, $d$-point, Wiener–Banach algebra, Szidon's inequality, Hardy–Littlewood inequality.
Received: 02.09.2015
Revised: 17.02.2016
English version:
Mathematical Notes, 2016, Volume 100, Issue 1, Pages 139–153
DOI: https://doi.org/10.1134/S0001434616070130
Bibliographic databases:
Document Type: Article
UDC: 517.518.4+517.443
Language: Russian
Citation: R. M. Trigub, “Almost Everywhere Summability of Fourier Series with Indication of the Set of Convergence”, Mat. Zametki, 100:1 (2016), 163–179; Math. Notes, 100:1 (2016), 139–153
Citation in format AMSBIB
\Bibitem{Tri16}
\by R.~M.~Trigub
\paper Almost Everywhere Summability of Fourier Series with Indication of the Set of Convergence
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 1
\pages 163--179
\mathnet{http://mi.mathnet.ru/mzm11124}
\crossref{https://doi.org/10.4213/mzm11124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588836}
\elib{https://elibrary.ru/item.asp?id=26414287}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 1
\pages 139--153
\crossref{https://doi.org/10.1134/S0001434616070130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382193300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983738607}
Linking options:
  • https://www.mathnet.ru/eng/mzm11124
  • https://doi.org/10.4213/mzm11124
  • https://www.mathnet.ru/eng/mzm/v100/i1/p163
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:677
    Full-text PDF :182
    References:98
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024