Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 5, Pages 643–648
DOI: https://doi.org/10.4213/mzm11084
(Mi mzm11084)
 

On the Distribution of the First Component $\eta_{t}$ of a Controlled Poisson Process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, without Boundary

T. M. Aliyev, K. K. Omarova

Institute of Control Systems, National Academy of Sciences of Azerbaijan
References:
Abstract: An ergodicity condition for the first component $\eta_{t}$ of a controlled Poisson process without boundary is found. The Laplace transform of the same component $\eta_{t}$, $t\ge 0$, is obtained from the given transition probabilities of the process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$. It is essential that the given process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, is a Markov process homogeneous in the second component.
Keywords: Poisson process, ergodicity condition, homogeneous Markov process, Laplace transform.
Received: 09.12.2015
Revised: 27.12.2017
English version:
Mathematical Notes, 2018, Volume 104, Issue 5, Pages 623–627
DOI: https://doi.org/10.1134/S0001434618110019
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: T. M. Aliyev, K. K. Omarova, “On the Distribution of the First Component $\eta_{t}$ of a Controlled Poisson Process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, without Boundary”, Mat. Zametki, 104:5 (2018), 643–648; Math. Notes, 104:5 (2018), 623–627
Citation in format AMSBIB
\Bibitem{AliOma18}
\by T.~M.~Aliyev, K.~K.~Omarova
\paper On the Distribution of the First Component~$\eta_{t}$ of a Controlled Poisson Process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, without Boundary
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 5
\pages 643--648
\mathnet{http://mi.mathnet.ru/mzm11084}
\crossref{https://doi.org/10.4213/mzm11084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871512}
\elib{https://elibrary.ru/item.asp?id=36361300}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 5
\pages 623--627
\crossref{https://doi.org/10.1134/S0001434618110019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454546800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059245506}
Linking options:
  • https://www.mathnet.ru/eng/mzm11084
  • https://doi.org/10.4213/mzm11084
  • https://www.mathnet.ru/eng/mzm/v104/i5/p643
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024