Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 6, Pages 832–847
DOI: https://doi.org/10.4213/mzm11067
(Mi mzm11067)
 

This article is cited in 4 scientific papers (total in 4 papers)

Jacobi-Type Differential Relations for the Lauricella Function $F_D^{(N)}$

S. I. Bezrodnykhabc

a Peoples Friendship University of Russia, Moscow
b Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
c Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute
Full-text PDF (588 kB) Citations (4)
References:
Abstract: For the generalized Lauricella hypergeometric function $F_D^{(N)}$, Jacobi-type differential relations are obtained and their proof is given. A new system of partial differential equations for the function $F_D^{(N)}$ is derived. Relations between associated Lauricella functions are presented. These results possess a wide range of applications, including the theory of Riemann–Hilbert boundary-value problem.
Keywords: generalized Lauricella hypergeometric function, Jacobi-type differential relation, Jacobi identity, Gauss function, Christoffel–Schwarz integral.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00781
16-07-01195
Russian Academy of Sciences - Federal Agency for Scientific Organizations
This work was supported by the Russian Foundation for Basic Research under grants 16-01-00781 and 16-07-01195 and by the program of the Russian Academy of Sciences “Contemporary problems of Theoretical Mathematics” (project “Optimal algorithms for the solution of problems of mathematical physics”).
Received: 19.01.2016
English version:
Mathematical Notes, 2016, Volume 99, Issue 6, Pages 821–833
DOI: https://doi.org/10.1134/S0001434616050205
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: S. I. Bezrodnykh, “Jacobi-Type Differential Relations for the Lauricella Function $F_D^{(N)}$”, Mat. Zametki, 99:6 (2016), 832–847; Math. Notes, 99:6 (2016), 821–833
Citation in format AMSBIB
\Bibitem{Bez16}
\by S.~I.~Bezrodnykh
\paper Jacobi-Type Differential Relations for the Lauricella Function $F_D^{(N)}$
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 6
\pages 832--847
\mathnet{http://mi.mathnet.ru/mzm11067}
\crossref{https://doi.org/10.4213/mzm11067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507448}
\elib{https://elibrary.ru/item.asp?id=26414306}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 6
\pages 821--833
\crossref{https://doi.org/10.1134/S0001434616050205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977070903}
Linking options:
  • https://www.mathnet.ru/eng/mzm11067
  • https://doi.org/10.4213/mzm11067
  • https://www.mathnet.ru/eng/mzm/v99/i6/p832
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024