Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 5, Pages 689–700
DOI: https://doi.org/10.4213/mzm11064
(Mi mzm11064)
 

On the Application of Linear Positive Operators for Approximation of Functions

S. B. Gashkov

Lomonosov Moscow State University
References:
Abstract: For the linear positive Korovkin operator
$$ f(x)\to t_n(f;x)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x+t)E(t)\,dt, $$
where $E(x)$ is the Egervary–Szász polynomial and the corresponding interpolation mean
$$ t_{n,N}(f;x)=\frac{1}{N}\sum_{k=-N}^{N-1} E_n\biggl(x-\frac{\pi k}{N}\biggr)f\biggl(\frac{\pi k}{N}\biggr), $$
the Jackson-type inequalities
$$ \|t_{n,N}(f;x)-f(x)\| \le (1+\pi)\omega_f\biggl(\frac1n\biggr),\qquad \|t_{n,N}(f;x)-f(x)\| \le 2\omega_f\biggl(\frac{\pi}{n+1}\biggr), $$
where $\omega_f(x)$ denotes the modulus of continuity, are proved for $N > n/2$. For $\omega_f(x) \le Mx$, the inequality
$$ \|t_{n,N}(f;x)-f(x)\| \le \frac{\pi M}{n+1} \mspace{2mu}. $$
is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.
Keywords: positive linear operators, Korovkin operator, interpolation mean, trigonometric polynomial, Egervary–Szász polynomial, Jackson-type inequality, functions satisfying the Lipschitz condition, Kolmogorov width.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00598
This work was supported by the Russian Foundation for Basic Research under grant 14-01-00598.
Received: 25.12.2015
Revised: 08.05.2016
English version:
Mathematical Notes, 2016, Volume 100, Issue 5, Pages 666–676
DOI: https://doi.org/10.1134/S0001434616110031
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: S. B. Gashkov, “On the Application of Linear Positive Operators for Approximation of Functions”, Mat. Zametki, 100:5 (2016), 689–700; Math. Notes, 100:5 (2016), 666–676
Citation in format AMSBIB
\Bibitem{Gas16}
\by S.~B.~Gashkov
\paper On the Application of Linear Positive Operators for Approximation of Functions
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 5
\pages 689--700
\mathnet{http://mi.mathnet.ru/mzm11064}
\crossref{https://doi.org/10.4213/mzm11064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588892}
\elib{https://elibrary.ru/item.asp?id=27349901}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 5
\pages 666--676
\crossref{https://doi.org/10.1134/S0001434616110031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391490500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007044440}
Linking options:
  • https://www.mathnet.ru/eng/mzm11064
  • https://doi.org/10.4213/mzm11064
  • https://www.mathnet.ru/eng/mzm/v100/i5/p689
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :37
    References:53
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024