Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 4, Pages 492–503
DOI: https://doi.org/10.4213/mzm11033
(Mi mzm11033)
 

This article is cited in 24 scientific papers (total in 24 papers)

On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra

A. M. Bikchentaev

Kazan (Volga Region) Federal University
References:
Abstract: Let $\tau$ be a faithful normal semifinite trace on a von Neumann algebra $\mathscr M$, let $p$, $0<p<\infty$, be a number, and let $L_p(\mathscr M,\tau)$ be the space of operators whose $p$th power is integrable (with respect to $\tau$). Let $P$ and $Q$ be $\tau$-measurable idempotents, and let $A\equiv P-Q$. In this case, 1) if $A\ge 0$, then $A$ is a projection and $QA=AQ=0$; 2) if $P$ is quasinormal, then $P$ is a projection; 3) if $Q\in\mathscr M$ and $A\in L_p(\mathscr M, \tau)$, then $A^2\in L_p(\mathscr M,\tau)$. Let $n$ be a positive integer, $n>2$, and $A=A^n\in\mathscr M$. In this case, 1) if $A\ne 0$, then the values of the nonincreasing rearrangement $\mu_t(A)$ belong to the set $\{0\}\cup[\|A^{n-2}\|^{-1},\|A\|]$ for all $t>0$; 2) either $\mu_t(A)\ge 1$ for all $t>0$ or there is a $t_0>0$ such that $\mu_t(A)=0$ for all $t>t_0$. For every $\tau$-measurable idempotent $Q$, there is a unique rank projection $P\in\mathscr M$ with $QP=P$, $PQ=Q$, and $P\mathscr M=Q\mathscr M$. There is a unique decomposition $Q=P+Z$, where $Z^2=0$$ZP=0$, and $PZ=Z$. Here, if $Q\in L_p(\mathscr M,\tau)$, then $P$ is integrable, and $\tau(Q)=\tau(P)$ for $p=1$. If $A\in L_1(\mathscr M,\tau)$ and if $A=A^3$ and $A-A^2\in\mathscr M$, then $\tau(A)\in\mathbb R$.
Keywords: Hilbert space, von Neumann algebra, normal trace, $\tau$-measurable operator, nonincreasing rearrangement, $\tau$-compact operator, integrable operator, quasinormal operator, idempotent, projection, rank projection.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02433
This work was supported by the Russian Foundation for Basic Research under grant 15-41-02433 and by the Government of the Republic of Tatarstan.
Received: 26.03.2015
Revised: 15.03.2016
English version:
Mathematical Notes, 2016, Volume 100, Issue 4, Pages 515–525
DOI: https://doi.org/10.1134/S0001434616090224
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.986
Language: Russian
Citation: A. M. Bikchentaev, “On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra”, Mat. Zametki, 100:4 (2016), 492–503; Math. Notes, 100:4 (2016), 515–525
Citation in format AMSBIB
\Bibitem{Bik16}
\by A.~M.~Bikchentaev
\paper On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 4
\pages 492--503
\mathnet{http://mi.mathnet.ru/mzm11033}
\crossref{https://doi.org/10.4213/mzm11033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588871}
\elib{https://elibrary.ru/item.asp?id=27349867}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 4
\pages 515--525
\crossref{https://doi.org/10.1134/S0001434616090224}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386774200022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992111228}
Linking options:
  • https://www.mathnet.ru/eng/mzm11033
  • https://doi.org/10.4213/mzm11033
  • https://www.mathnet.ru/eng/mzm/v100/i4/p492
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:623
    Full-text PDF :341
    References:120
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024