Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 6, Pages 929–932
DOI: https://doi.org/10.4213/mzm11032
(Mi mzm11032)
 

This article is cited in 4 scientific papers (total in 4 papers)

Brief Communications

Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity

G. G. Amosova, I. Yu. Zhdanovskiibc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
c National Research University "Higher School of Economics" (HSE), Moscow
Full-text PDF (378 kB) Citations (4)
References:
Keywords: von Neumann algebra, noncommutative operator graph, superactivation phenomenon, quantum channel, quantum state, Kraus operator.
Funding agency Grant number
Russian Science Foundation 14-21-00162
Russian Foundation for Basic Research 13-01-00234
14-01-00416
The work of the first author was supported by the Russian Science Foundation under grant 14-21-00162 in the Steklov Mathematical Institute of the Russian Academy of Sciences.
The work of the second author was supported by the Russian Foundation for Basic Research under grants 13-01-00234 and 14-01-00416 and in the framework of a subsidy granted to the National Research University Higher School of Economics by the Government of the Russian Federation for the implementation of the Global Competitiveness Program.
Received: 15.12.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 6, Pages 924–927
DOI: https://doi.org/10.1134/S000143461605031X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. G. Amosov, I. Yu. Zhdanovskii, “Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity”, Mat. Zametki, 99:6 (2016), 929–932; Math. Notes, 99:6 (2016), 924–927
Citation in format AMSBIB
\Bibitem{AmoZhd16}
\by G.~G.~Amosov, I.~Yu.~Zhdanovskii
\paper Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 6
\pages 929--932
\mathnet{http://mi.mathnet.ru/mzm11032}
\crossref{https://doi.org/10.4213/mzm11032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507457}
\zmath{https://zbmath.org/?q=an:1348.81129}
\elib{https://elibrary.ru/item.asp?id=26414317}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 6
\pages 924--927
\crossref{https://doi.org/10.1134/S000143461605031X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900031}
\elib{https://elibrary.ru/item.asp?id=26838854}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977073685}
Linking options:
  • https://www.mathnet.ru/eng/mzm11032
  • https://doi.org/10.4213/mzm11032
  • https://www.mathnet.ru/eng/mzm/v99/i6/p929
  • This publication is cited in the following 4 articles:
    1. Amosov G.G., “On Capacity of Quantum Channels Generated By Irreducible Projective Unitary Representations of Finite Groups”, Quantum Inf. Process., 21:2 (2022), 81  crossref  mathscinet  isi
    2. G. G. Amosov, A. S. Mokeev, “On Noncommutative Operator Graphs Generated by Resolutions of Identity”, Proc. Steklov Inst. Math., 313 (2021), 8–16  mathnet  crossref  crossref  isi  elib
    3. G. G. Amosov, “On inner geometry of noncommutative operator graphs”, Eur. Phys. J. Plus, 135:10 (2020), 865  crossref  isi  scopus
    4. G. G. Amosov, “Algebraic methods of the study of quantum information transfer channels”, J. Math. Sci. (N. Y.), 241:2 (2019), 109–116  mathnet  mathnet  crossref  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:531
    Full-text PDF :75
    References:59
    First page:36
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025