Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 5, Pages 701–709
DOI: https://doi.org/10.4213/mzm11013
(Mi mzm11013)
 

This article is cited in 3 scientific papers (total in 3 papers)

Neumann Problem with the Integro-Differential Operator in the Boundary Condition

I. M. Danyliuka, A. O. Danilyukb

a Yuriy Fedkovych Chernivtsi National University
b Bukovina State University of Finance and Economic
Full-text PDF (425 kB) Citations (3)
References:
Abstract: The Neumann problem for a second-order parabolic equation with integro-differential operator in the boundary condition is considered. A well-posedness theorem is proved, in particular, the integral representation of the solution is obtained, estimates for the derivatives of the solution are established, and the kernel of the inverse operator of the problem is explicitly expressed.
Keywords: Neumann problem, second-order parabolic equation, integro-differential operator, Hölder space, Volterra–Fredholm integral equation of the second kind.
Received: 15.11.2015
Revised: 23.02.2016
English version:
Mathematical Notes, 2016, Volume 100, Issue 5, Pages 687–694
DOI: https://doi.org/10.1134/S0001434616110055
Bibliographic databases:
Document Type: Article
UDC: 517.954
Language: Russian
Citation: I. M. Danyliuk, A. O. Danilyuk, “Neumann Problem with the Integro-Differential Operator in the Boundary Condition”, Mat. Zametki, 100:5 (2016), 701–709; Math. Notes, 100:5 (2016), 687–694
Citation in format AMSBIB
\Bibitem{DanDan16}
\by I.~M.~Danyliuk, A.~O.~Danilyuk
\paper Neumann Problem with the Integro-Differential Operator in the Boundary Condition
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 5
\pages 701--709
\mathnet{http://mi.mathnet.ru/mzm11013}
\crossref{https://doi.org/10.4213/mzm11013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588893}
\elib{https://elibrary.ru/item.asp?id=27349902}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 5
\pages 687--694
\crossref{https://doi.org/10.1134/S0001434616110055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391490500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007071340}
Linking options:
  • https://www.mathnet.ru/eng/mzm11013
  • https://doi.org/10.4213/mzm11013
  • https://www.mathnet.ru/eng/mzm/v100/i5/p701
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :68
    References:81
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024