|
This article is cited in 1 scientific paper (total in 1 paper)
Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas
E. A. Sevast'yanov National Engineering Physics Institute "MEPhI", Moscow
Abstract:
For arbitrary Riemann integrable functions $f$ and irrational numbers $\theta \in (0,1)$, we obtain estimates of the error $R_n(f,\theta)$ of the quadrature formula $$ \int_{0}^{1}f(x)\,dx=\frac{1}{n}\sum_{k=1}^nf(\{k\theta\})- R_n(f,\theta) $$ in which $\{k\theta\}$ is the fractional part of the number $k\theta$.
Keywords:
quadrature formula, continued fraction, type of an irrational number, mean oscillation modulus.
Received: 15.10.2015
Citation:
E. A. Sevast'yanov, “Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas”, Mat. Zametki, 101:2 (2017), 262–285; Math. Notes, 101:2 (2017), 320–340
Linking options:
https://www.mathnet.ru/eng/mzm11002https://doi.org/10.4213/mzm11002 https://www.mathnet.ru/eng/mzm/v101/i2/p262
|
Statistics & downloads: |
Abstract page: | 410 | Full-text PDF : | 61 | References: | 74 | First page: | 34 |
|