Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 4, Pages 611–629
DOI: https://doi.org/10.4213/mzm10987
(Mi mzm10987)
 

This article is cited in 18 scientific papers (total in 18 papers)

Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses

I. I. Sharapudinovab

a Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
b Daghestan State Pedagogical University
References:
Abstract: We study Fourier series of Jacobi polynomials $P_k^{\alpha-r,-r}(x)$, $k=r,r+1,\dots$, orthogonal with respect to the Sobolev-type inner product of the following form:
$$ \langle f,g\rangle=\sum_{\nu=0}^{r-1} f^{(\nu)}(-1)g^{(\nu)}(-1) +\int_{-1}^1f^{(r)}(t)g^{(r)}(t)(1-t)^\alpha\,dt. $$
It is shown that such series are a particular case of mixed series of Jacobi polynomials $P_k^{\alpha,\beta}(x)$, $k=0,1,\dots$, considered earlier by the author. We study the convergence of mixed series of general Jacobi polynomials and their approximation properties. The results obtained are applied to the study of the approximation properties of Fourier series of Sobolev orthogonal Jacobi polynomials $P_k^{\alpha-r,-r}(x)$.
Keywords: mixed series of Sobolev orthogonal Jacobi polynomials Jacobi polynomials, Fourier–Sobolev series of Jacobi polynomials and their approximation properties.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00486
This work was supported by the Russian Foundation for Basic Research under grant 16-01-00486.
Received: 15.10.2015
Revised: 30.04.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 4, Pages 718–734
DOI: https://doi.org/10.1134/S0001434617030300
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: I. I. Sharapudinov, “Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses”, Mat. Zametki, 101:4 (2017), 611–629; Math. Notes, 101:4 (2017), 718–734
Citation in format AMSBIB
\Bibitem{Sha17}
\by I.~I.~Sharapudinov
\paper Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 4
\pages 611--629
\mathnet{http://mi.mathnet.ru/mzm10987}
\crossref{https://doi.org/10.4213/mzm10987}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629050}
\elib{https://elibrary.ru/item.asp?id=28931422}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 4
\pages 718--734
\crossref{https://doi.org/10.1134/S0001434617030300}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401454600030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018828482}
Linking options:
  • https://www.mathnet.ru/eng/mzm10987
  • https://doi.org/10.4213/mzm10987
  • https://www.mathnet.ru/eng/mzm/v101/i4/p611
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:513
    Full-text PDF :59
    References:74
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024