Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 6, Pages 832–841
DOI: https://doi.org/10.4213/mzm10976
(Mi mzm10976)
 

This article is cited in 23 scientific papers (total in 23 papers)

Asymptotics of the Solutions of the Sturm–Liouville Equation with Singular Coefficients

V. E. Vladikina, A. A. Shkalikov

Lomonosov Moscow State University
References:
Abstract: We obtain asymptotic representations as λ in the upper and lower half-planes for the solutions of the Sturm–Liouville equation
y+p(x)y+q(x)y=λ2ρ(x)y,x[a,b]R,
under the condition that q is a distribution of first-order singularity, ρ is a positive absolutely continuous function, and p belongs to the space L2[a,b].
Keywords: Sturm–Liouville equation, asymptotic solution, singular coefficient, Volterra integral operator, fundamental system of solutions, space of bounded functions.
Funding agency Grant number
Russian Science Foundation 14-11-00754
Received: 06.10.2015
English version:
Mathematical Notes, 2015, Volume 98, Issue 6, Pages 891–899
DOI: https://doi.org/10.1134/S0001434615110218
Bibliographic databases:
Document Type: Article
UDC: 517.928+517.984
Language: Russian
Citation: V. E. Vladikina, A. A. Shkalikov, “Asymptotics of the Solutions of the Sturm–Liouville Equation with Singular Coefficients”, Mat. Zametki, 98:6 (2015), 832–841; Math. Notes, 98:6 (2015), 891–899
Citation in format AMSBIB
\Bibitem{VlaShk15}
\by V.~E.~Vladikina, A.~A.~Shkalikov
\paper Asymptotics of the Solutions of the Sturm--Liouville Equation with Singular Coefficients
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 6
\pages 832--841
\mathnet{http://mi.mathnet.ru/mzm10976}
\crossref{https://doi.org/10.4213/mzm10976}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438539}
\elib{https://elibrary.ru/item.asp?id=24850249}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 6
\pages 891--899
\crossref{https://doi.org/10.1134/S0001434615110218}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953244494}
Linking options:
  • https://www.mathnet.ru/eng/mzm10976
  • https://doi.org/10.4213/mzm10976
  • https://www.mathnet.ru/eng/mzm/v98/i6/p832
  • This publication is cited in the following 23 articles:
    1. Michael Ruzhansky, Serikbol Shaimardan, Alibek Yeskermessuly, “Wave equation for Sturm-Liouville operator with singular potentials”, Journal of Mathematical Analysis and Applications, 531:1 (2024), 127783  crossref
    2. M. B. Zvereva, “The Problem of Deformations of a Singular String with a Nonlinear Boundary Condition”, Lobachevskii J Math, 45:1 (2024), 555  crossref
    3. Alibek Yeskermessuly, Trends in Mathematics, 4, Modern Problems in PDEs and Applications, 2024, 175  crossref
    4. A. P. Kosarev, A. A. Shkalikov, “Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter”, Math. Notes, 116:2 (2024), 283–302  mathnet  crossref  crossref
    5. Michael Ruzhansky, Alibek Yeskermessuly, “Heat equation for Sturm–Liouville operator with singular propagation and potential”, Journal of Applied Analysis, 2024  crossref
    6. M. Yu. Vatolkin, “To the Study of Various Representations of Solutions of Quasi-Differential Equations in the Form of Sums of Series and Some of Their Applications”, Comput. Math. and Math. Phys., 64:11 (2024), 2571  crossref
    7. M. Yu. Vatolkin, “On the spectrum of a quasidifferential boundary value problem of the second order”, Russian Math. (Iz. VUZ), 67:1 (2023), 1–19  mathnet  crossref  crossref
    8. M. Sh. Burlutskaya, M. B. Zvereva, M. I. Kamenskii, “Boundary Value Problem on a Geometric Star-Graph with a Nonlinear Condition at a Node”, Math. Notes, 114:2 (2023), 275–279  mathnet  crossref  crossref
    9. Natalia P. Bondarenko, “Regularization and Inverse Spectral Problems for Differential Operators with Distribution Coefficients”, Mathematics, 11:16 (2023), 3455  crossref
    10. Michael Ruzhansky, Alibek Yeskermessuly, “Wave Equation for Sturm–Liouville Operator with Singular Intermediate Coefficient and Potential”, Bull. Malays. Math. Sci. Soc., 46:6 (2023)  crossref
    11. M. B. Zvereva, “Model deformatsii sistemy stiltesovskikh strun s nelineinym usloviem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 528–545  mathnet  crossref  mathscinet
    12. Kamenskii M. Fitte Paul Raynaud de Wong N.-Ch. Zvereva M., “A Model of Deformations of a Discontinuous Stieltjes String With a Nonlinear Boundary Condition”, J. Nonlinear Var. Anal., 5:5 (2021), 737–759  crossref  isi
    13. A. M. Savchuk, A. A. Shkalikov, “Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients”, Sb. Math., 211:11 (2020), 1623–1659  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. Gomilko, L. Rzepnicki, “On the asymptotic behaviour of solutions of the Dirac system and applications to the Sturm-Liouville problem with a singular potential”, J. Spectr. Theory, 10:3 (2020), 747–786  crossref  mathscinet  isi
    15. Kamenskii M. Wen Ch.-F. Zvereva M., “On a Variational Problem For a Model of a Stieltjes String With a Backlash At the End”, Optimization, 69:9 (2020), 1935–1959  crossref  mathscinet  isi
    16. V. E. Vladykina, “Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter”, Moscow University Mathematics Bulletin, 74:1 (2019), 38–41  mathnet  crossref  mathscinet  zmath  isi
    17. V. E. Vladykina, “Spectral characteristics of the Sturm–Liouville operator under minimal restrictions on smoothness of coefficients”, Moscow University Mathematics Bulletin, 74:6 (2019), 235–240  mathnet  crossref  mathscinet  zmath  isi
    18. M. Kamenskii, Ch.-F. Wen, M. Zvereva, “Oscillations of the string with singuliarities”, J. Nonlinear Convex Anal., 20:8, SI (2019), 1525–1545  mathscinet  isi
    19. M. V. Ruzhansky, N. E. Tokmagambetov, “On a Very Weak Solution of the Wave Equation for a Hamiltonian in a Singular Electromagnetic Field”, Math. Notes, 103:5 (2018), 856–858  mathnet  crossref  crossref  mathscinet  isi  elib
    20. N. F. Valeev, O. V. Myakinova, Ya. T. Sultanaev, “On the Asymptotics of Solutions of a Singular $n$th-Order Differential Equation with Nonregular Coefficients”, Math. Notes, 104:4 (2018), 606–611  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:789
    Full-text PDF :215
    References:100
    First page:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025