Abstract:
We obtain asymptotic representations as λ→∞ in the upper and lower half-planes for the solutions of the Sturm–Liouville equation
−y″+p(x)y′+q(x)y=λ2ρ(x)y,x∈[a,b]⊂R,
under the condition that q is a distribution of first-order singularity, ρ is a positive absolutely continuous function, and p belongs to the space L2[a,b].
Keywords:
Sturm–Liouville equation, asymptotic solution, singular coefficient, Volterra integral operator, fundamental system of solutions, space of bounded functions.
Citation:
V. E. Vladikina, A. A. Shkalikov, “Asymptotics of the Solutions of the Sturm–Liouville Equation with Singular Coefficients”, Mat. Zametki, 98:6 (2015), 832–841; Math. Notes, 98:6 (2015), 891–899
\Bibitem{VlaShk15}
\by V.~E.~Vladikina, A.~A.~Shkalikov
\paper Asymptotics of the Solutions of the Sturm--Liouville Equation with Singular Coefficients
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 6
\pages 832--841
\mathnet{http://mi.mathnet.ru/mzm10976}
\crossref{https://doi.org/10.4213/mzm10976}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438539}
\elib{https://elibrary.ru/item.asp?id=24850249}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 6
\pages 891--899
\crossref{https://doi.org/10.1134/S0001434615110218}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953244494}
Linking options:
https://www.mathnet.ru/eng/mzm10976
https://doi.org/10.4213/mzm10976
https://www.mathnet.ru/eng/mzm/v98/i6/p832
This publication is cited in the following 23 articles:
Michael Ruzhansky, Serikbol Shaimardan, Alibek Yeskermessuly, “Wave equation for Sturm-Liouville operator with singular potentials”, Journal of Mathematical Analysis and Applications, 531:1 (2024), 127783
M. B. Zvereva, “The Problem of Deformations of a Singular String with a Nonlinear Boundary Condition”, Lobachevskii J Math, 45:1 (2024), 555
Alibek Yeskermessuly, Trends in Mathematics, 4, Modern Problems in PDEs and Applications, 2024, 175
A. P. Kosarev, A. A. Shkalikov, “Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter”, Math. Notes, 116:2 (2024), 283–302
Michael Ruzhansky, Alibek Yeskermessuly, “Heat equation for Sturm–Liouville operator with singular propagation and potential”, Journal of Applied Analysis, 2024
M. Yu. Vatolkin, “To the Study of Various Representations of Solutions of Quasi-Differential Equations in the Form of Sums of Series and Some of Their Applications”, Comput. Math. and Math. Phys., 64:11 (2024), 2571
M. Yu. Vatolkin, “On the spectrum of a quasidifferential boundary value problem of the second order”, Russian Math. (Iz. VUZ), 67:1 (2023), 1–19
M. Sh. Burlutskaya, M. B. Zvereva, M. I. Kamenskii, “Boundary Value Problem on a Geometric Star-Graph with a Nonlinear Condition at a Node”, Math. Notes, 114:2 (2023), 275–279
Natalia P. Bondarenko, “Regularization and Inverse Spectral Problems for Differential Operators with Distribution Coefficients”, Mathematics, 11:16 (2023), 3455
Michael Ruzhansky, Alibek Yeskermessuly, “Wave Equation for Sturm–Liouville Operator with Singular Intermediate Coefficient and Potential”, Bull. Malays. Math. Sci. Soc., 46:6 (2023)
M. B. Zvereva, “Model deformatsii sistemy stiltesovskikh strun s nelineinym usloviem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 528–545
Kamenskii M. Fitte Paul Raynaud de Wong N.-Ch. Zvereva M., “A Model of Deformations of a Discontinuous Stieltjes String With a Nonlinear Boundary Condition”, J. Nonlinear Var. Anal., 5:5 (2021), 737–759
A. M. Savchuk, A. A. Shkalikov, “Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients”, Sb. Math., 211:11 (2020), 1623–1659
A. Gomilko, L. Rzepnicki, “On the asymptotic behaviour of solutions of the Dirac system and applications to the Sturm-Liouville problem with a singular potential”, J. Spectr. Theory, 10:3 (2020), 747–786
Kamenskii M. Wen Ch.-F. Zvereva M., “On a Variational Problem For a Model of a Stieltjes String With a Backlash At the End”, Optimization, 69:9 (2020), 1935–1959
V. E. Vladykina, “Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter”, Moscow University Mathematics Bulletin, 74:1 (2019), 38–41
V. E. Vladykina, “Spectral characteristics of the Sturm–Liouville operator under minimal restrictions on smoothness of coefficients”, Moscow University Mathematics Bulletin, 74:6 (2019), 235–240
M. Kamenskii, Ch.-F. Wen, M. Zvereva, “Oscillations of the string with singuliarities”, J. Nonlinear Convex Anal., 20:8, SI (2019), 1525–1545
M. V. Ruzhansky, N. E. Tokmagambetov, “On a Very Weak Solution of the Wave Equation for a Hamiltonian in a Singular Electromagnetic Field”, Math. Notes, 103:5 (2018), 856–858
N. F. Valeev, O. V. Myakinova, Ya. T. Sultanaev, “On the Asymptotics of Solutions of a Singular $n$th-Order Differential Equation with Nonregular Coefficients”, Math. Notes, 104:4 (2018), 606–611