Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 6, Pages 832–841
DOI: https://doi.org/10.4213/mzm10976
(Mi mzm10976)
 

This article is cited in 22 scientific papers (total in 22 papers)

Asymptotics of the Solutions of the Sturm–Liouville Equation with Singular Coefficients

V. E. Vladikina, A. A. Shkalikov

Lomonosov Moscow State University
References:
Abstract: We obtain asymptotic representations as $\lambda \to \infty$ in the upper and lower half-planes for the solutions of the Sturm–Liouville equation
$$ -y''+p(x)y'+q(x)y= \lambda ^2 \rho(x)y, \qquad x\in [a,b] \subset \mathbb{R}, $$
under the condition that $q$ is a distribution of first-order singularity, $\rho$ is a positive absolutely continuous function, and $p$ belongs to the space $L_2[a,b]$.
Keywords: Sturm–Liouville equation, asymptotic solution, singular coefficient, Volterra integral operator, fundamental system of solutions, space of bounded functions.
Funding agency Grant number
Russian Science Foundation 14-11-00754
Received: 06.10.2015
English version:
Mathematical Notes, 2015, Volume 98, Issue 6, Pages 891–899
DOI: https://doi.org/10.1134/S0001434615110218
Bibliographic databases:
Document Type: Article
UDC: 517.928+517.984
Language: Russian
Citation: V. E. Vladikina, A. A. Shkalikov, “Asymptotics of the Solutions of the Sturm–Liouville Equation with Singular Coefficients”, Mat. Zametki, 98:6 (2015), 832–841; Math. Notes, 98:6 (2015), 891–899
Citation in format AMSBIB
\Bibitem{VlaShk15}
\by V.~E.~Vladikina, A.~A.~Shkalikov
\paper Asymptotics of the Solutions of the Sturm--Liouville Equation with Singular Coefficients
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 6
\pages 832--841
\mathnet{http://mi.mathnet.ru/mzm10976}
\crossref{https://doi.org/10.4213/mzm10976}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438539}
\elib{https://elibrary.ru/item.asp?id=24850249}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 6
\pages 891--899
\crossref{https://doi.org/10.1134/S0001434615110218}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953244494}
Linking options:
  • https://www.mathnet.ru/eng/mzm10976
  • https://doi.org/10.4213/mzm10976
  • https://www.mathnet.ru/eng/mzm/v98/i6/p832
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:731
    Full-text PDF :196
    References:85
    First page:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024