Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 6, Pages 865–871
DOI: https://doi.org/10.4213/mzm10975
(Mi mzm10975)
 

This article is cited in 5 scientific papers (total in 5 papers)

Schwarzian Derivative and Covering Arcs of a Pencil of Circles by Holomorphic Functions

V. N. Dubininab

a Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Vladivostok
b Far Eastern Federal University, Vladivostok
Full-text PDF (462 kB) Citations (5)
References:
Abstract: Let $f$ be a holomorphic function in the disk $U=\{z:|z|<1\}$, $|f(z)|<1$ in $U$, let $f(\pm1)=\pm1$ in the sense of angular limits, and let the angular Schwarzian derivatives $S_{f}(\pm1)$ exist. We establish an upper bound for the sum $S_{f}(-1)+S_{f}(1)$ under the assumption that the image $f(U)$ does not contain open arcs of the pencil of circles $\arg[(1+w)/(1-w)]=\theta$, $-\pi/2<\theta<\varphi$, with endpoints $w=\pm1$ and
$$ \operatorname{Re} f''(1)+f'(1)(1-f'(1))=-\operatorname{Re} f''(-1)+f'(-1)(1-f'(-1))=0. $$
This bound depends on $\varphi$ and $f'(\pm1)$ only.
Keywords: Schwarzian derivative, holomorphic functions, boundary distortion, covering theorem.
Funding agency Grant number
Russian Science Foundation 14-11-00022
Received: 06.07.2015
English version:
Mathematical Notes, 2015, Volume 98, Issue 6, Pages 920–925
DOI: https://doi.org/10.1134/S0001434615110243
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. N. Dubinin, “Schwarzian Derivative and Covering Arcs of a Pencil of Circles by Holomorphic Functions”, Mat. Zametki, 98:6 (2015), 865–871; Math. Notes, 98:6 (2015), 920–925
Citation in format AMSBIB
\Bibitem{Dub15}
\by V.~N.~Dubinin
\paper Schwarzian Derivative and Covering Arcs of a Pencil of Circles by Holomorphic Functions
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 6
\pages 865--871
\mathnet{http://mi.mathnet.ru/mzm10975}
\crossref{https://doi.org/10.4213/mzm10975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438542}
\elib{https://elibrary.ru/item.asp?id=24850257}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 6
\pages 920--925
\crossref{https://doi.org/10.1134/S0001434615110243}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953309452}
Linking options:
  • https://www.mathnet.ru/eng/mzm10975
  • https://doi.org/10.4213/mzm10975
  • https://www.mathnet.ru/eng/mzm/v98/i6/p865
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :136
    References:56
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024