Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 5, paper published in the English version journal (Mi mzm10924)  

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

The Finiteness of Coassociated Primes of Generalized Local Homology Modules

T. T. Nam, D. N. Yen

Ho Chi Minh Pedagogical University, Ho Chi Minh City, Vietnam
Citations (1)
Abstract: We present some finiteness results for co-associated primes of generalized local homology modules. Let $M$ be a finitely generated $R$-module and $N$ a linearly compact $R$-module. If $N$ and $H^I_i(N)$ satisfy the finiteness condition for co-associated primes for all $i<k$, then $\operatorname{Coass}_R(H^I_k(M, N))$ is a finite set. On the other hand, if $H^I_i(N)=0$ for all $i<t$ and ${\operatorname{Tor}}^R_j(M,H^I_t(N))=0$ for all $j<h$, then ${\operatorname{Tor}}^R_h(M,H^I_t(N))\cong H^I_{h+t}(M, N)$. Moreover, $\operatorname{Coass}(H^I_{h+t}(M, N))$ is also a finite set provided $N$ satisfies the finiteness condition for co-associated primes. Finally, $N$ is a semi-discrete linearly compact $R$-module such that $0:_NI\not=0$. Let $t=\operatorname{Width}_I(N)$ and $h={\operatorname{tor}}_-(M,H^I_t(N))$; it follows that $\operatorname{Width}_{I+\operatorname{Ann}(M)}(N)=t+h$ and $\operatorname{Coass}(H^I_{h+t}(M, N))$ is a finite set.
Keywords: linearly compact module, local homology, local cohomology.
Received: 28.03.2013
English version:
Mathematical Notes, 2015, Volume 97, Issue 5, Pages 738–744
DOI: https://doi.org/10.1134/S0001434615050089
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/mzm10924
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024